Pasar al contenido principal
Logo GMV

Main navigation

  • Sectores
    • Icono espacio
      Espacio
    • Icono Aeronáutica
      Aeronáutica
    • Icono Defensa y Seguridad
      Defensa y seguridad
    • Icono Sistemas Inteligentes de Transporte
      Sistemas inteligentes de transporte
    • Icono Automoción
      Automoción
    • Icono Ciberseguridad
      Ciberseguridad
    • Icono Servicios públicos Digitales
      Servicios públicos digitales
    • Icono Sanidad
      Sanidad
    • Icono Industria
      Industria
    • Icono Financiero
      Financiero
    • Icono Industria
      Servicios
    • Todos los sectores

    Destacamos

    EMV Transit
    EMV Transit: cuando la tecnología no se apaga
  • Talento
  • Sobre GMV
    • Conoce la empresa
    • Historia
    • Equipo directivo
    • Certificaciones
    • Responsabilidad social corporativa
  • Comunicación
    • Noticias
    • Eventos
    • Blog
    • Revista GMV News
    • Sala de prensa
    • Biblioteca de medios
    • Actualidad GMV

Secondary navigation

  • Productos A-Z
  • GMV Global
    • Global (en)
    • España y LATAM (es - ca - en)
    • Alemania (de - en)
    • Portugal (pt - en)
    • Polonia (pl - en)
    • Todas las sedes y los sites de GMV
  • Inicio
  • Comunicación
  • Noticias
Atrás
Nueva búsqueda
Date
  • Espacio
  • Industria

Resolviendo problemas en el campo de la observación de la Tierra con computación cuántica

05/12/2022
  • Imprimir
Compartir
Resolviendo problemas en el campo de la observación de la Tierra con computación cuántica

Dentro del campo de la observación de la tierra se abarcan problemas de muy diversa índole, generalmente a través del análisis de imágenes tomadas en distintas bandas de radiación o emisión electromagnética. Sin embargo, previo a estos análisis, los propios operadores de satélites han de enfrentarse a un problema de optimización de recursos, el cual puede describirse de la siguiente forma:

Dado un conjunto de imágenes solicitadas para un paso de órbita de un satélite, el objetivo es el de determinar cuál es el subconjunto de imágenes que se debería tomar en dicho paso de órbita, tratando de optimizar ciertas medidas: beneficio, importancia, capacidad, etc.

En la práctica totalidad de los casos, tomar el conjunto completo de imágenes solicitadas no es factible, dado que la órbita del satélite es fija, y existen una serie de restricciones que limitan las combinaciones de imágenes posibles de adquirir. Por ejemplo, algunas imágenes no pueden ser tomadas con la misma cámara dado que existen restricciones de tiempo de maniobra, tiempo de captura, proximidad geográfica, etc.

Para resolver esta cuestión, Antón Makarov y Alexander Benítez de la División de Inteligencia Artificial y Big Data de GMV, han expuesto en el meetup de IBM cómo se puede formular este problema matemáticamente para poder resolverlo mediante computación cuántica. Esta intervención que han realizado va relacionada con el caso de uso que están trabajando dentro del proyecto CUCO, el primer gran proyecto de computación cuántica a nivel nacional y empresarial que persigue avanzar el estado del arte de algoritmos cuánticos y aplicar ese conocimiento a una serie de pruebas de concepto en distintos sectores estratégicos de la economía española como Energía, Financiero, Espacio, Defensa y Logística. Este proyecto ha sido subvencionado por el CDTI y apoyado por el Ministerio de Ciencia e Innovación bajo el Plan de Recuperación, Transformación y Resiliencia.

La selección de este problema no ha sido casual, después de una larga evaluación de más de 15 casos de uso distintos, se ha identificado que este es un problema presente en el día a día de la industria aeroespacial: la adquisición óptima de imágenes es un problema que debe resolver cualquier operador de satélites de manera periódica. Además, es frecuente que las peticiones de imágenes lleguen a lo largo del tiempo, siendo necesario en la práctica resolver para una única planificación, varios problemas, incluyendo las nuevas imágenes a medida que van llegando. Disminuir el tiempo de ejecución de estos algoritmos puede suponer una ventaja competitiva, además de allanar el camino para resolver en un futuro problemas con múltiples satélites, que requieren de tiempos de cómputo incluso mayores.

[MÁS INFO] PROYECTO CUCO
  • Imprimir
Compartir

Relacionados

emissary
  • Espacio
Europa refuerza su seguridad espacial con el proyecto EMISSARY
satelite
  • Espacio
GMV renueva su contrato con la agencia espacial francesa para el mantenimiento y evolución del sistema de simulación de vigilancia espacial BAS3E
debris
  • Espacio
GMV gana un contrato con la ESA para estudiar el entorno orbital de una misión espacial

Contacto

Isaac Newton, 11 Tres Cantos
E-28760 Madrid

Tel. +34 91 807 21 00

Contact menu

  • Contacto
  • GMV en el mundo

Blog

  • Blog

Sectores

Sectors menu

  • Espacio
  • Aeronáutica
  • Defensa y Seguridad
  • Sistemas Inteligentes de Transporte
  • Automoción
  • Ciberseguridad
  • Servicios públicos digitales
  • Sanidad
  • Industria
  • Financiero
  • Servicios
  • Talento
  • Sobre GMV
  • Directo a
    • Sala de prensa
    • Noticias
    • Eventos
    • Blog
    • Productos A-Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Contacto
  • Aviso legal
  • Política de privacidad
  • Política de cookies

Footer Info

  • Compromiso Medioambiental
  • Información financiera