Przejdź do treści
Logo GMV

Main navigation

  • Sektory
    • Icono espacio
      Przemysł kosmiczny
    • Icono Aeronáutica
      Aeronautyka
    • Icono Defensa y Seguridad
      Obronność i bezpieczeństwo
    • Icono Sistemas Inteligentes de Transporte
      Inteligentne systemy transportowe
    • Icono Automoción
      Motoryzacja
    • Icono Ciberseguridad
      Cyberbezpieczeństwo
    • Icono Servicios públicos Digitales
      Cyfrowe usługi publiczne
    • Icono Sanidad
      Opieka zdrowotna
    • Icono Industria
      Przemysł
    • Icono Financiero
      Finanse
    • Icono Industria
      Usługi
    • Wszystkie sektory

    Zaznaczenie

    Slopsquatting
    Slopsquatting – ciche zagrożenie zrodzone z halucynacji LLM
  • Talent
  • O GMV
    • Poznaj naszą firmę
    • Historia
    • Kadra kierownicza
    • Certyfikaty
    • Społeczna odpowiedzialność biznesu
  • Komunikacja
    • Aktualności
    • Wydarzenia
    • Blog
    • Magazyn GMV News
    • Dla mediów
    • Biblioteka mediów
    • Aktualności GMV

Secondary navigation

  • Produkty od A do Z
  • Globalny zasięg GMV
    • Global (en)
    • Hiszpania i Ameryka Łacińska (es - ca - en)
    • Niemcy (de - en)
    • Portugalia (pt - en)
    • Polska (pl - en)
    • Wszystkie biura GMV i strony internetowe
  • Strona główna
  • Komunikacja
  • Aktualności
Wstecz
New search
Date
  • Usługi

Znaczenie etyki w SI przy identyfikacji osób i kategoryzacji obrazów

01/07/2019
  • Drukuj
Podziel się
GMV underlines the importance of AI ethics in identifying persons and categorizing images

Z punktu widzenia sztucznej inteligencji API (interfejsy programowania aplikacji) do widzenia i rozpoznawania obrazów są już dość zaawansowane, by przenieść je ku procesom produkcji zaawansowanej i wideodetekcji. Możemy więc mówić o wykrywaniu złożonych wad, klasyfikacji struktury i materiałów, czytaniu liter, weryfikacji montażu, lokalizacji zniekształconych części itd. Bez wątpienia oprogramowanie do analizy obrazów oferuje odpowiedzi w czasie rzeczywistym na tak złożone wyzwania wzrokowe. Rozpoznawanie obrazów daje nam zdolność interpretacji i klasyfikacji tego, co rejestrują oczy systemu, jak również wykorzystania pozyskanych danych do optymalizacji naszego łańcucha produkcji przemysłowej czy też do zaspokojenia innych potrzeb w dowolnym sektorze działalności, co wcześniej nie było możliwe przy tradycyjnych metodach wzrokowych.

Sposób, w jaki działa rozpoznawanie obrazów, polega na stworzeniu sieci neuronowej przetwarzającej każdy pojedynczy piksel obrazu, aby następnie przetworzyć je w całości. Ta technologia – tak jak cała SI – wymaga szkolenia i treningu, koniecznych do poprawy oferowanych funkcjonalności i precyzji modeli. W tym celu zazwyczaj karmi się sieć możliwie największą liczbą obrazów.

Dział Sztucznej Inteligencji i Big Data GMV Secure e-Solutions opracował pokaz prezentujący uczestnikom OpenExpo Europe – największego w Europie kongresu nt. innowacji technologicznych w przedsiębiorczości – do czego zdolna jest sztuczna inteligencja dzięki przetwarzaniu obrazów. Pokaz polegał na stworzeniu bazy danych na podstawie obrazów, które uczestnicy umieszczali na Twitterze (z określonym hashtagiem). Następnie przechodzili oni przed kamerą przy stanowisku GMV, a wtedy system rozpoznawał ich, pokazując ich tweet i łącząc ich z postacią z popularnego serialu telewizyjnego fantasy, która najbardziej ich przypominała.

Sztuczna inteligencja umożliwia tworzenie nowych narzędzi i spektakularnych zastosowań, umieszczając w zasięgu naszej ręki systemy bardziej precyzyjne niż ludzki wzrok w klasyfikacji i rozpoznawaniu obrazów. Trzeba mieć jednak na uwadze tendencyjność stosowanych algorytmów, ponieważ te mogą podejmować decyzje utrwalające stereotypy bądź powodujące dyskryminację. To właśnie było tematem odczytu wygłoszonego na kongresie przez Dyrektora Działu Sztucznej Inteligencji i Big Data w GMV Secure e-Solutions, José Carlosa Baquero.

W swoim wystąpieniu Baquero podkreślił znaczenie przejrzystości oraz promowania modeli kształcenia, które mają na celu szukanie algorytmów równościowych i odpowiedzialne wykorzystanie sztucznej inteligencji. Potrzebne są pomysłowe techniki korygowania głębokiej tendencyjności danych i zmuszania modeli do realizacji bardziej bezstronnych przewidywań. Troska o przejrzystość i równość w uczeniu maszynowym stale rośnie i stanowi kwestię, nad którą musimy się pochylić, aby zapewnić bardziej sprawiedliwą oraz obiecującą przyszłość.

  • Drukuj
Podziel się

Powiązane

GMV-IBM
  • Usługi
GMV rewolucjonizuje dostęp do danych dzięki inteligentnemu rozwiązaniu opartemu na technologii IBM
PAIT, la herramienta de GMV y Peoplematters, galardonada en los XVI Premios Comunicaciones Hoy
  • Usługi
PAIT, narzędzie autorstwa firm GMV i Peoplematters, nagrodzone w ramach XVI edycji rozdania Nagród Comunicaciones Hoy
AMETIC Artificial Intelligence Summit 2024 #AIAMSummit24
  • Opieka zdrowotna
  • Przemysł
  • Usługi
AMETIC Artificial Intelligence Summit 2024 #AIAMSummit24
09 Maj

Kontakt

Ul. Hrubieszowska 2
Warszawa, 01-209 Polska

Tel. +48 223955165
Fax. +48 223955167

Contact menu

  • Kontakt
  • GMV na świecie

Blog

  • Blog

Sektory

Sectors menu

  • Przemysł kosmiczny
  • Aeronautyka
  • Obronność i bezpieczeństwo
  • Inteligentne Systemy Transportowe
  • Motoryzacja
  • Cyberbezpieczeństwo
  • Cyfrowe usługi publiczne
  • Opieka zdrowotna
  • Przemysł
  • Finanse
  • Usługi
  • Talent
  • O firmie GMV
  • Na skróty
    • Pokój prasowy
    • Aktualności
    • Wydarzenia
    • Blog
    • Produkty od A do Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Kontakt
  • Informacje prawne
  • Polityka prywatności
  • Polityka dotycząca plików cookie

Footer Info

  • Informacje finansowe
  • Zaangażowanie w ochronę środowiska