Pasar al contenido principal
Logo GMV

Main navigation

  • Sectores
    • Icono espacio
      Espacio
    • Icono Aeronáutica
      Aeronáutica
    • Icono Defensa y Seguridad
      Defensa y seguridad
    • Icono Sistemas Inteligentes de Transporte
      Sistemas inteligentes de transporte
    • Icono Automoción
      Automoción
    • Icono Ciberseguridad
      Ciberseguridad
    • Icono Servicios públicos Digitales
      Servicios públicos digitales
    • Icono Sanidad
      Sanidad
    • Icono Industria
      Industria
    • Icono Financiero
      Financiero
    • Icono Industria
      Servicios
    • Todos los sectores

    Destacamos

    EMV Transit
    EMV Transit: cuando la tecnología no se apaga
  • Talento
  • Sobre GMV
    • Conoce la empresa
    • Historia
    • Equipo directivo
    • Certificaciones
    • Responsabilidad social corporativa
  • Comunicación
    • Noticias
    • Eventos
    • Blog
    • Revista GMV News
    • Sala de prensa
    • Biblioteca de medios
    • Actualidad GMV

Secondary navigation

  • Productos A-Z
  • GMV Global
    • Global (en)
    • España y LATAM (es - ca - en)
    • Alemania (de - en)
    • Portugal (pt - en)
    • Polonia (pl - en)
    • Todas las sedes y los sites de GMV
  • Inicio
  • Comunicación
  • Noticias
Atrás
Nueva búsqueda
Date
  • Industria

Mantenimiento operacional y predictivo para dinamizar la industria

15/03/2022
  • Imprimir
Compartir
GMV habla de mantenimiento operacional y predictivo para dinamizar la industria

La implantación de soluciones innovadoras, donde la digitalización de los procesos juega un papel fundamental, es clave para reducir costes operativos y de producción, alcanzar los objetivos de sostenibilidad y consolidar la transformación hacia la Industria 5.0. En este sentido, la aplicación de tecnologías disruptivas para simular las operaciones críticas, como el mantenimiento, está siendo clave para lograr la optimización de los procesos, recursos y energía. Asimismo, las necesidades de los consumidores están cambiando cada vez de forma más rápida, lo que obliga a las empresas a adaptarse y actuar con antelación. Es aquí donde la Inteligencia Artificial puede aportar mucho valor a este tipo de industrias, aumentando sus capacidades productivas y mejorando su eficiencia.

En el ámbito industrial, los modelos predictivos engloban una serie de técnicas estadísticas de minería de datos, modelización predictiva y machine learning que a través de los datos se puede llegar a hacer un análisis de la tendencia y, de manera no inducida, encontrar de modo autónomo patrones de repetición que ayudan a las empresas a anticipar escenarios y poder tomar decisiones como la evaluación del riesgo, la detección de anomalías en la fabricación, o en determinadas operaciones del tipo que sean.

Aquellas industrias que tienen sus procesos con dispositivos y sensores conectados necesitan conocer cómo se comporta la planta fuera de la normalidad para así tomar decisiones con el objetivo de optimizarla. Sin embargo el coste y riesgo de configurar la planta para dicho comportamiento es muy elevado y es aquí donde entran los gemelos digitales. Esta tecnología se nutre de los datos en tiempo real que se extraen de todos los activos físicos que influyen en el proceso productivo, gracias a que todos ellos han sido digitalizados, almacenados y procesados, e interactúan con otros datos virtuales y datos de interacción entre ellos. Esta información específica se basa en el histórico de datos de casos de uso reales, por lo que es una gran herramienta para poder analizar y comprender las diferentes fases del producto y de esta forma poder optimizarlas. «De cara a mejorar los procesos de mantenimiento, hay un cambio en la estrategia de instalar sensores y almacenar los datos producidos por ellos, a una estrategia basada en casos de uso, es decir, a seleccionar un proceso industrial (o parte de él), definir un objetivo y ver cómo mejorarlo incorporando estas tecnologías innovadoras» señala José Carlos Baquero, Director de la División de Inteligencia Artificial y Big Data de GMV, durante la mesa redonda sobre “Digitalización y simulación de procesos industriales”, organizada por enerTIC en el encuentro “Foro Tendencias 2022: Next Industry 5.0”.

En GMV estamos trabajando con este tipo de tecnologías en la detección de anomalías, indicando dónde se está produciendo el problema; en tareas de inspección de calidad automática con técnicas de visión artificial; en la automatización de almacenes con robótica autónoma; en robótica colaborativa en laboratorios; o en el diseño de gemelos digitales para conocer mejor el comportamiento de la planta y poder entrenar modelos de machine learning.

MÁS INFO: Mantenimiento Operacional y Predictivo 4.0
  • Imprimir
Compartir

Relacionados

GMV participa en el webinar del PNAV para impulsar una inspección industrial más sostenible mediante IA y Robótica
  • Industria
GMV participa en el webinar del PNAV para impulsar una inspección industrial más sostenible mediante IA y Robótica
GMV participa en el coloquio de enerTIC sobre resiliencia y sostenibilidad en el sector energético
  • Industria
GMV participa en el coloquio de enerTIC sobre resiliencia y sostenibilidad en el sector energético
Irradia Energía confía en GMV para utilizar uPathWay en la inspección autónoma de sus plantas solares
  • Industria
Irradia Energía confía en GMV para utilizar uPathWay en la inspección autónoma de sus plantas solares

Contacto

Isaac Newton, 11 Tres Cantos
E-28760 Madrid

Tel. +34 91 807 21 00

Contact menu

  • Contacto
  • GMV en el mundo

Blog

  • Blog

Sectores

Sectors menu

  • Espacio
  • Aeronáutica
  • Defensa y Seguridad
  • Sistemas Inteligentes de Transporte
  • Automoción
  • Ciberseguridad
  • Servicios públicos digitales
  • Sanidad
  • Industria
  • Financiero
  • Servicios
  • Talento
  • Sobre GMV
  • Directo a
    • Sala de prensa
    • Noticias
    • Eventos
    • Blog
    • Productos A-Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Contacto
  • Aviso legal
  • Política de privacidad
  • Política de cookies

Footer Info

  • Compromiso Medioambiental
  • Información financiera