Pasar al contenido principal
Logo GMV

Main navigation

  • Sectores
    • Icono espacio
      Espacio
    • Icono Aeronáutica
      Aeronáutica
    • Icono Defensa y Seguridad
      Defensa y seguridad
    • Icono Sistemas Inteligentes de Transporte
      Sistemas inteligentes de transporte
    • Icono Automoción
      Automoción
    • Icono Ciberseguridad
      Ciberseguridad
    • Icono Servicios públicos Digitales
      Servicios públicos digitales
    • Icono Sanidad
      Sanidad
    • Icono Industria
      Industria
    • Icono Financiero
      Financiero
    • Icono Industria
      Servicios
    • Todos los sectores

    Destacamos

    Slopsquatting
    Slopsquatting: una amenaza silenciosa nacida de las alucinaciones de los LLMs
  • Talento
  • Sobre GMV
    • Conoce la empresa
    • Historia
    • Equipo directivo
    • Certificaciones
    • Responsabilidad social corporativa
  • Comunicación
    • Noticias
    • Eventos
    • Blog
    • Revista GMV News
    • Sala de prensa
    • Biblioteca de medios
    • Actualidad GMV

Secondary navigation

  • Productos A-Z
  • GMV Global
    • Global (en)
    • España y LATAM (es - ca - en)
    • Alemania (de - en)
    • Portugal (pt - en)
    • Polonia (pl - en)
    • Todas las sedes y los sites de GMV
  • Inicio
  • Comunicación
  • Noticias
Atrás
Nueva búsqueda
Date
  • Servicios

Discriminación Algorítmica: dejando atrás el mundo sesgado de ayer y construyendo un mañana más justo

11/12/2018
  • Imprimir
Compartir
José Carlos Baquero, Director of Artificial Intelligence and Big Data in GMV’s Secure e-Solutions, analyses the thorny issue of algorithmic bias

Durante décadas hemos sido testigos de los grandes beneficios de los algoritmos en la toma de decisiones. En el mundo real, su aplicación va desde diagnósticos médicos y sentencias judiciales hasta el reclutamiento profesional y la detección de criminales. Sin embargo, a medida que se han ido extendiendo como consecuencia del avance tecnológico, han surgido reivindicaciones que exigen una mayor responsabilidad con su implementación, enfocado en la preocupación sobre la transparencia y la equidad del Machine Learning. En concreto, esta incertidumbre surge por la capacidad de recrear sesgos históricos para normalizar y amplificar las desigualdades sociales a través de discriminación algorítmica. Una temática que ha analizado José Carlos Baquero, Director de Inteligencia Artificial y Big Data en Secure e-Solutions de GMV, y que ha hecho reflexionar a los asistentes del Codemotion Madrid.

Los avances en el aprendizaje automático han llevado a las empresas y la sociedad a confiar en los datos, partiendo de que su correcto análisis genera decisiones más eficientes e imparciales que las humanas. Pero, “a pesar de que una decisión tomada por un algoritmo esté hecha de acuerdo con criterios objetivos, puede suponer una discriminación no intencionada. Las máquinas aprenden de nuestros prejuicios y estereotipos, y si los algoritmos que emplean se están convirtiendo en la clave de nuestras actividades cotidianas, la necesidad de entender sus impactos en la sociedad es una cuestión urgente que tenemos que tratar” argumenta Baquero. Es por ello que debemos exigir un análisis sistemático de los procesos algorítmicos y la generación de nuevos marcos conceptuales, legales y regulatorios para garantizar los derechos y la equidad humana en una sociedad hiperconectada y globalizada. Una tarea que evidentemente hay que desempeñar conjuntamente las organizaciones y los gobiernos.

Durante su ponencia, José Carlos Baquero ha expuesto algunos casos recientes de esta problemática, como la herramienta de Inteligencia Artificial de Amazon para contratar empleados que discriminaba sistemáticamente a las mujeres. En este caso, el programa llegó a la conclusión de que los hombres eran mejores candidatos y tendía a dotarles de mayor puntuación al revisar su currículum. Esto es solo uno de los ejemplos mostrados que plantea que cada vez surgen más inquietudes sobre la pérdida de transparencia, responsabilidad y equidad de los algoritmos debido a la complejidad, opacidad, ubicuidad y exclusividad del entorno.

En busca de modelos predictivos equitativos

Independientemente de cómo se ajuste el algoritmo, todos tendrán sesgos. Al fin y al cabo, las predicciones se basan en estadísticas generalizadas, no en la situación individual de alguien. Pero podemos utilizarlos para lograr decisiones más sabias y justas que las que los seres humanos hacen por sí solos. Para ello necesitamos intensificar y buscar nuevas formas para mitigar la discriminación emergente en los modelos. Además, debemos de estar seguros que las predicciones no perjudiquen injustamente a la sociedad con ciertas características sensibles (género, etnia, etc.).

Algunas aproximaciones expuestas por José Carlos Baquero fueron la necesidad de poner foco en la interpretación y transparencia, permitiendo interrogar a los modelos complejos, o hacer modelos más robustos y justos en sus predicciones, modificando la optimización de las funciones y añadiendo restricciones.

En definitiva, “construir modelos predictivos imparciales no es tan sencillo como quitar algunos atributos sensibles de los datos de entrenamiento. Es evidente que se requieren técnicas ingeniosas para corregir el profundo sesgo de los datos y forzar a los modelos a realizar predicciones más imparciales. Todo ello suponiendo una reducción del desempeño de nuestro modelo, pero considerado un pequeño precio a pagar para dejar atrás el mundo sesgado de ayer y construir un mañana más justo” concluyó Baquero.

  • Imprimir
Compartir

Relacionados

GMV-IBM
  • Servicios
GMV revoluciona el acceso a los datos con una solución inteligente basada en tecnología IBM
PAIT, la herramienta de GMV y Peoplematters, galardonada en los XVI Premios Comunicaciones Hoy
  • Servicios
PAIT, la herramienta de GMV y Peoplematters, galardonada en los XVI Premios Comunicaciones Hoy
IA tradicional vs IA generativa: ventajas y límites para su implantación en las empresas
  • Servicios
  • Financiero
  • Industria
  • Servicios públicos digitales
IA tradicional vs IA generativa: ventajas y límites para su implantación en las empresas
27 Nov

12:45 - 13:15

Contacto

Isaac Newton, 11 Tres Cantos
E-28760 Madrid

Tel. +34 91 807 21 00

Contact menu

  • Contacto
  • GMV en el mundo

Blog

  • Blog

Sectores

Sectors menu

  • Espacio
  • Aeronáutica
  • Defensa y Seguridad
  • Sistemas Inteligentes de Transporte
  • Automoción
  • Ciberseguridad
  • Servicios públicos digitales
  • Sanidad
  • Industria
  • Financiero
  • Servicios
  • Talento
  • Sobre GMV
  • Directo a
    • Sala de prensa
    • Noticias
    • Eventos
    • Blog
    • Productos A-Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Contacto
  • Aviso legal
  • Política de privacidad
  • Política de cookies

Footer Info

  • Compromiso Medioambiental
  • Información financiera