Vés al contingut
Logo GMV

Main navigation

  • Sectors
    • Icono espacio
      Espai
    • Icono Aeronáutica
      Aeronàutica
    • Icono Defensa y Seguridad
      Defensa i seguretat
    • Icono Sistemas Inteligentes de Transporte
      Sistemes intel·ligents de transport
    • Icono Automoción
      Automoció
    • Icono Ciberseguridad
      Ciberseguretat
    • Icono Servicios públicos Digitales
      Serveis públics digitals
    • Icono Sanidad
      Sanitat
    • Icono Industria
      Indústria
    • Icono Financiero
      Financer
    • Icono Industria
      Serveis
    • Tots els sectors

    Destaquem

    Slopsquatting
    Slopsquatting: una amenaça silenciosa nascuda de les al·lucionacions dels LLM
  • Talent
  • Sobre GMV
    • Coneix l’empresa
    • Història
    • Equip directiu
    • Certificacions
    • Responsabilitat social corporativa
  • Comunicació
    • Notícies
    • Esdeveniments
    • Blog
    • Revista GMV News
    • Sala de premsa
    • Biblioteca de mitjans
    • Actualitat GMV

Secondary navigation

  • Productes A-Z
  • GMV Global
    • Global (en)
    • Espanya i LATAM (es - ca - en)
    • Alemanya (de - en)
    • Portugal (pt - en)
    • Polònia (pl - en)
    • Totes les seus i els llocs web de GMV
  • Inici
  • Comunicació
  • Notícies
Tornar
Nova cerca
Date
  • Serveis

Discriminació Algorítmica: deixant enrere el món esbiaixat d’ahir i construint un demà més just

11/12/2018
  • Impressió
Compartir
José Carlos Baquero, Director of Artificial Intelligence and Big Data in GMV’s Secure e-Solutions, analyses the thorny issue of algorithmic bias

Durant dècades, hem estat testimonis dels grans beneficis dels algorismes en la presa de decisions. En el món real, la seva aplicació va des de diagnòstics mèdics i sentències judicials fins al reclutament professional i la detecció de criminals. Tanmateix, a mesura que s’han anat estenent com a conseqüència de l’avenç tecnològic, han sorgit reivindicacions que exigeixen més responsabilitat amb la seva implementació, enfocat en la preocupació sobre la transparència i l’equitat del Machine Learning. Concretament, aquesta incertesa sorgeix per la capacitat de recrear biaixos històrics per normalitzar i amplificar les desigualtats socials a través de discriminació algorítmica. Una temàtica que ha analitzat José Carlos Baquero, director d’Intel·ligència Artificial i Big Data a Secure e-Solutions de GMV, i que ha fet reflexionar els assistents del Codemotion Madrid.

Els avenços en l’aprenentatge automàtic han portat les empreses i la societat a confiar en les dades, partint que la seva correcta anàlisi genera decisions més eficients i imparcials que les humanes. Però, “malgrat que una decisió presa per un algorisme estigui feta d’acord amb criteris objectius, pot implicar una discriminació no intencionada. Les màquines aprenen dels nostres prejudicis i estereotips, i si els algorismes que empren s’estan convertint en la clau de les nostres activitats quotidianes, la necessitat d’entendre els seus impactes en la societat és una qüestió urgent que hem de tractar”, argumenta Baquero. És per això que hem d’exigir una anàlisi sistemàtica dels processos algorítmics i la generació de nous marcs conceptuals, legals i reguladors per garantir els drets i l’equitat humana en una societat hiperconnectada i globalitzada. Una tasca que, evidentment, cal que exerceixin conjuntament les organitzacions i els governs.

Durant la seva ponència, José Carlos Baquero ha exposat alguns casos recents d’aquesta problemàtica, com l’eina d’Intel·ligència Artificial d’Amazon per contractar empleats que discriminava sistemàticament les dones. En aquest cas, el programa va arribar a la conclusió que els homes eren millors candidats i tendia a dotar-los de més puntuació en revisar el seu currículum. Això és només un dels exemples mostrats que planteja que cada vegada sorgeixen més inquietuds sobre la pèrdua de transparència, responsabilitat i equitat dels algorismes a causa de la complexitat, opacitat, ubiqüitat i exclusivitat de l’entorn.

A la recerca de models predictius equitatius.

Independentment de com s’ajusti l’algorisme, tots tindran biaixos. Al cap i a la fi, les prediccions es basen en estadístiques generalitzades, no en la situació individual d’algú. Però podem utilitzar-los per aconseguir decisions més sàvies i justes que les que els éssers humans fan per si sols. Per a això necessitem intensificar i buscar noves maneres per mitigar la discriminació emergent en els models. A més, hem d’estar segurs que les prediccions no perjudiquin injustament la societat amb certes característiques sensibles (gènere, ètnia, etc.).

Algunes aproximacions exposades per José Carlos Baquero van ser la necessitat de posar focus en la interpretació i transparència, permetent interrogar els models complexos o fer models més robustos i justos en les seves prediccions, modificant l’optimització de les funcions i afegint restriccions.

En definitiva, “construir models predictius imparcials no és tan senzill com treure alguns atributs sensibles de les dades d’entrenament. És evident que es requereixen tècniques enginyoses per corregir el profund biaix de les dades i forçar els models a fer prediccions més imparcials. Tot això suposant una reducció de l’acompliment del nostre model, però considerat un petit preu a pagar per deixar enrere el món esbiaixat d’ahir i construir un demà més just”, va concloure Baquero.

 

  • Impressió
Compartir

Relacionats

GMV-IBM
  • Serveis
GMV revoluciona l’accés a les dades amb una solució intel·ligent basada en tecnologia IBM
IA tradicional vs IA generativa: ventajas y límites para su implantación en las empresas
  • Serveis
  • Financer
  • Indústria
  • Serveis públics digitals
IA tradicional vs IA generativa: avantatges i límits per a la seva implantació a les empreses
27 nov.

12:45 - 13:15 h

PAIT: apoyo tecnológico para cumplir con la normativa
  • Serveis públics digitals
  • Serveis
PAIT®: suport tecnològic per complir la normativa sobre igualtat salarial i transparència retributiva

Contacte

Isaac Newton, 11 Tres Cantos
E-28760 Madrid

Tel. +34 91 807 21 00

Contact menu

  • Contacte
  • GMV al món

Blog

  • Blog

Sectors

Sectors menu

  • Espai
  • Aeronàutica
  • Defensa i Seguretat
  • Sistemes Intel·ligents de Transport
  • Automoció
  • Ciberseguretat
  • Serveis públics digitals
  • Sanitat
  • Indústria
  • Financer
  • Serveis
  • Talent
  • Sobre GMV
  • Directe a
    • Sala de premsa
    • Notícies
    • Esdeveniments
    • Blog
    • Productes A-Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Contacte
  • Avís legal
  • Política de privacitat
  • Política de galetes

Footer Info

  • Compromís mediambiental
  • Informació financera