

GMV

Av. D. João II, 43

Torre Fernão de Magalhães, 7º

1998-025 Lisboa

Tel. +351 21 382 93 66, Fax +351 21 386 64 93

www.gmv.com.pt

© GMV, 2020; all rights reserved

 Code: xky-wp-1

 Internal code: GMV 21331/20 V1/20

 Version: 1.0

 Date:

Author:

15/04/2020

Tobias Schoofs

|x|k|y|
hypervisor

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 2 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

DOCUMENT STATUS SHEET

Version Date Pages Changes

1.0 15/04/2020 20 Initial version of the document.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 3 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

TABLE OF CONTENTS

1. INTRODUCTION ... 5

1.1. PURPOSE ... 5

1.2. SCOPE ... 5

1.3. REFERENCES .. 5

1.5. ACRONYMS .. 6

2. THE XKY HYPERVISOR .. 7

2.1. OVERVIEW ... 7

2.2. FEATURES .. 9

2.2.1. Available Features ... 9

2.2.2. Upcoming Features ... 9

2.3. ARCHITECTURE ... 10

3. USE CASE: DIMA .. 14

3.1. THE DIMA PROJECTS ... 14

3.2. THE DIMA DEMONSTRATOR .. 16

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 4 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

LIST OF TABLES

Table 1-1 Reference Documents ... 5

Table 1-2 Acronyms .. 6

LIST OF FIGURES

Figure 2-1: XKY Architecture .. 7

Figure 2-2: Time Partitioning ... 7

Figure 2-3: XKY PMK Design ... 10

Figure 2-4: Virtualisation Means ... 11

Figure 2-5: Guests ... 12

Figure 2-6: IO Partition ... 13

Figure 3-1: Configuration View in the DIMA Demonstrator ... 15

Figure 3-2: Avionics Bay of the Flight Demonstrator ... 16

Figure 3-3: Possible Configuration of the Lab Demonstrator ... 17

Figure 3-4: Main HMI Window – DIMA in Flight .. 18

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 5 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

1. INTRODUCTION

1.1. PURPOSE

This whitepaper presents the XKY Partitioning Real-Time Operating System and discusses a use case in

Distributed Integrated Modular Avionics (DIMA).

1.2. SCOPE

This document is released in the context of the XKY product development.

1.3. REFERENCES

Table 1-1 Reference Documents

Ref. Title Code Version Date

[RD.1] Miguel Tavares de Barros: “A Distributed Integrated Modular
Avionics Platform for Multi-Mission Vehicles”, Lisbon, 2019.

Barros - July, 2019

[RD.2] ARINC 653 Part 1 A653P1 S4 August, 2015

[RD.3] ARINC 653 Part 2 A653P2 S1 December, 2008

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 6 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

1.5. ACRONYMS

Acronyms used in this document and needing a definition are included in the following table:

Table 1-2 Acronyms

Acronym Definition

AFDX Avionics Full-Duplex Switched Ethernet

AHRS Attitude and Heading Reference System

BSP Board Support Package

CDS Cockpit Display System

CPM Core Processing Module

CPU Central Processing Unit

DIMA Distributed Integrated Modular Avionics

DMA Direct Memory Access

GPS Global Positioning System

GPU Graphics Processing Unit

HMI Human-Machine Interface

IMA Integrated Modular Avionics

IDE Integrated Development Environment

IO Input/Output

IOP IO Partition

IRQ Interrupt Request

OS Operating System

PCA Performance Calculation Application

PCIe Peripheral Component Interconnect express

PMK Partition Management Kernel

POS Partition Operating System

PSS Payload Supervisor System

RDC Remote Data Concentrator

RTOS Real-Time Operating System

SDR Software-Defined Radio

UAV Unmanned Aerial Vehicle

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 7 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

2. THE XKY HYPERVISOR

2.1. OVERVIEW

XKY is a real-time operating system built from the ground up to support systems following the

paradigm of Robust Partitioning used most prominently today in Integrated Modular Avionics (IMA).
The design is based on a hypervisor approach permitting several applications, and even operating
systems (OS), to safely coexist on the same hardware. The XKY Partition Management Kernel (PMK)

runs directly on bare hardware to control and manage the guest systems.

The architecture consists of two levels: the lower level is composed of a software hypervisor that
robustly segregates computing resources including access to processors, memory, Direct Memory

Access controllers (DMA), timers and other IO devices; the second level, the application level, is
composed by applications with their own virtualised execution environments running in isolated
containers called partitions.

Through its hypervisor architecture, XKY enables different operating systems to execute within

different partitions guaranteeing uninterrupted access to the resources configured for them at design
time. Any OS can be used as guest system, including general-purpose OS like Linux. However, XKY is

optimised for supporting real-time systems and the typical guest is therefore an RTOS.

Guest operating systems need to be adapted to interface with XKY’s virtualization layer resulting in a

software module equivalent to a new board support package for the virtualized OS that targets XKY.

Figure 2-1: XKY Architecture

The PMK runs in privileged mode, while partitioned applications and guest operating systems run in
user mode making it impossible for them to directly interact with critical features of the hardware. Any
violation like calling a privileged instruction or accessing a resource that was not explicitly granted to
this guest will cause an exception that is then handled by the kernel.

An important resource granted to partitions is processor time. Processor time is assigned by means of
a static cyclic scheduling that assigns execution windows to partitions.

Figure 2-2: Time Partitioning

PMK

Hardware

Partition Partition Partition Partition

Wolf Sheep Grass Trap

10ms 20ms 15ms 5ms

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 8 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

When the current execution window expires, the PMK stops the execution of the current partition and
context-switches (“jumps”) to the partition assigned to the next execution window. It is, this way,
impossible for a partition to “steal” time from another partition.

For real-time applications with periodic threads, the partition schedule must be aligned to the periods

and the time requirements of the applications. To support an application that runs at, say, 10Hz the
partition schedule must return to this partition every 100ms; if the application has a worst case
execution time of 10ms, at least 10ms execution time must be assigned to this partition. The time
may be allocated by one or several execution windows, e.g. one window with a duration of 10ms or
two windows with 5ms each.

For safety-critical applications, typically seen in aeronautics, robust partitioning is strict; even side
channels through which a partition may influence the execution time of another partition are closed.

An example is caches. Every execution window starts with a clean cache (all entries are invalidated),
so that the operating environment does not add to jitter. For less critical applications, those features
can be relaxed optimising average performance but increasing jitter.

XKY supports multi-core. The execution windows of the scheduler refer explicitly to the processor core

on which the partition shall run. It is, this way, possible to run partitions in parallel. A use case may
be external IO; a dedicated partition handling IO could run in parallel to application partitions making

data sent by or to partitions available almost instantly.

Multi-core, however, may lead to competition for internal resources like the memory bus. For critical
systems, a careful trade-off is necessary to decide on the design of the system at hand. Often system
integrators decide to use only one CPU even though more processing units would be available on the
target board. XKY provides the mechanism to use multiple cores, but it does not prescribe the policy of

how using these cores. The policy remains to be decided by the system integrator.

Compared to other partitioning OS, XKY has relevant advantages that make it unique even in the

already small group of this kind of systems:

 Certifiability
We are currently working on the documentation set for DO-178C certification up to DAL A. The
documentation is expected to be available still in 2020.

 Hypervisor Approach

The consequent application of the hypervisor approach makes XKY easy to be ported to new boards

and to port other execution environments and OS to run on XKY. Our internal porting projects for

new boards have schedules of two to four weeks (depending on the complexity of the target).
Porting a classical RTOS (like RTEMS) to XKY usually takes about one to three months. Of course

there are systems that are easily ported and others that are much harder (e.g. Linux).

 Small Footprint and Simplicity
The XKY PMK has a very small code base of 5-6K lines of code. This leads to a relatively small

document set for certification and, in consequence, helps to keep certification time and cost low. It
also opens the way for a complete formal verification for future security certification at highest
assurance levels (e.g. EAL7). Beyond certification considerations, simplicity is also a good means
to reduce the risk of bugs in the code and makes XKY attractive even for non- or less critical

projects.

 Performance
XKY is fast. This is true for partition context switching, partition-internal process context switching

and system calls. For critical systems, performance is of course not the main concern and often
speed is sacrificed for stronger safety or security guarantees. However, having good average and

worst case execution time is definitely an advantage in non-critical projects; but even critical

systems usually benefit from good performance.
The main statement in this paragraph is intentionally left vague. We will not discuss performance
in detail here. Another publication will discuss this topic with the required scientific rigour.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 9 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

2.2. FEATURES

2.2.1. AVAILABLE FEATURES

The core feature of the XKY RTOS is Robust Partitioning. Partitioning can be strict (for safety- or

security-critical systems) or relaxed. In strict partitioning, caches are flushed and invalidated on each

context switch. This makes covert channel attacks through the cache impossible (for security-critical
system) and it reduces jitter (for hard real-time and safety-critical systems). For less critical systems,
partitioning may be relaxed. In that case, caches are only flushed and invalidated if explicitly
requested in the configuration.

XKY supports multi-core. Partitions can be scheduled on any number of processing cores by indicating

the CPU on which the current partition(s) shall be executed.

XKY provides fast communication between partitioned applications by means of queueing and sampling

ports and shared memory. The transport between ports is completely managed within the kernel and

may use either memory copy, DMA or PCIe.

XKY also supports external communication through PCIe (implemented in the kernel) and through

Ethernet or AFDX (implemented in a partition that is scheduled together with other partitions). These
interfaces work out-of-the-box. Other IO drivers can be easily integrated at partition level.

XKY provides an ARINC 653 APEX for Part 1 (supplement 3 and partly supplement 4, [RD.2]) and

selected services of Part 2 [RD.3]. The Multiple Module Schedule, Sampling Port Extensions and
Shared Memory services (all Part 2) are integrated features of the XKY APEX. Add-ons are the Logbook

System, Service Access Points and the ARINC 653 Filesystem (upcoming).

XKY currently targets PowerPC (32 and 64bit) and ARM (Cortex-A8, Cortex-A53, Cortex-M4 among

others). There is also a hardware-independent “BSP” for Unix/Linux that can be used as a simulation
and prototyping tool.

XKY is certifiable. We are currently working on the documentation set for DO-178C certification up to

DAL A. The documentation set is expected to be available in the last quarter of 2020.

2.2.2. UPCOMING FEATURES

We are currently working on new sets of features like:

 GPU Support for fast numerical computing and graphics;

 Symmetric Multi-Processing (ARINC 653 P1 Supplement 4);

 A POSIX Personality including subsets 1, 1b and 1c;

 Support for Linux as guest OS;

 An Integrated Development Environment (IDE) with extensions for IMA Application Developers and
System Integrators.

We are constantly working on new target boards, hardware architectures and device drivers.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 10 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

2.3. ARCHITECTURE

Figure 2-3 below depicts the overall design of the PMK, showing its main components:

Figure 2-3: XKY PMK Design

The main components in the PMK are (bottom-up, left-to-right):

 The Board Support Package (BSP)

 A set of initialisation routines and hooks

 The Partition Management Component

 The Health-Monitor

 The Para-Virtualisation Layer.

The PMK prescribes a clear interface towards the hardware. This interface is called the Board Support
Package (BSP). The BSP contains low-level initialisation routines, access to specific processor features
(enabling/disabling cache, enabling/disabling interrupts, etc.) and services to interact with devices.

The hardware-independent part of the PMK, the so called “Core”, remains the same on all boards and
processor architectures; what varies is the implementation of Core features on the specific hardware
in the BSP. But also the structure of the BSP is very similar for different boards. It is basically defined
by the features requested by the Core. This way, porting the PMK to a new board is a routine job for
an experienced programmer.

The basic set-up of the hardware after system start is one of the tasks of the BSP. When the low-level
initialisation routine concludes, the BSP calls the PMK initialisation which validates the configuration,

initialises the partition schedule and the health-monitor and finally, starts the scheduler. From now on,
the PMK will only be active in interrupt handlers. There are no kernel threads like in most general
purpose OS and most RTOS.

Partition Management is mainly concerned with partition scheduling. It is worth mentioning that the
PMK does not use a regular time tick. Instead, it just sets a timer for the next event. This approach,
sometimes called “tick-less system”, reduces interrupts drastically improving the overall performance
of partitioned applications and, potentially, reducing energy consumption.

When the timer fires, the system enters the interrupt context for the timer interrupt. The handler
performs some housekeeping (like updating system time and setting the current partition) and
performs a “return-from-interrupt”, i.e. it returns to partition execution.

Hardware

Partition Partition Partition Partition

P
M

K

Partition
Management

Board Support Package

Para-Virtualization Layer

Health-
Monitor

Initialization

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 11 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

An important component is the Health-Monitor (HM). The HM shields the system against all kinds of
faults. Faults can be caused by software errors in application code, by hardware faults or by radiation
and other unexpected events from outside the computer (e.g. fault of another computer in a
distributed system).

How to react to errors depending on where (PMK, partition) and when (initialisation, normal execution,
error handling) they occur is defined in the HM tables. The system integrator specifies whether errors
are handled by application code or by the PMK and how they should be addressed (by invoking a user-
defined error handler, by restarting or stopping a single partition or by restarting the computer).

It is essential that calling a privileged instruction in user mode (i.e. in a partition) will trigger an error
and finally enter the HM. An application trying to break out of partitioning is, hence, considered a
software fault that will be handled, for instance, by stopping the faulty partition.

The overall design of the XKY PMK follows, as mentioned, a hypervisor approach. The PMK provides a

number of services to the guest OS, which at some point boil down to specific hardware features. To
improve performance the XKY hypervisor uses para-virtualisation techniques. That means it provides a

software interface to the guest system that is composed of system calls (syscalls for short) and virtual
interrupt requests (IRQs), as depicted in Figure 2-4Figure 2-4

Figure 2-4: Virtualisation Means

Syscalls are software interrupts that, in essence, invoke services implemented in the PMK which, in
their turn, interact directly with the hardware. This kind of virtualisation is inspired by the design of

traditional operating systems. The alternative approach, to trap all privileged instructions issued by
guest systems, analysing them and deducing the intended behaviour, may be more appealing in terms
of virtualisation design, but is slower by orders of magnitude. It works fine on modern desktops and
servers, but is often too slow for embedded real-time systems. It is also significantly more complex
leading to increased certification cost.

The guest OS, on the other hand, must be prepared (manually or automatically) to run on the XKY

PMK. That is: it must use the software interface provided by the PMK. This, however, is easier than it
might sound at first. The PMK software interface mimics assembly language instructions providing
calls that correspond closely to instructions typically found in common instruction sets, such as
installing an interrupt handler, setting a timer or writing to/reading from an IO device. The
virtualisation layer even provides architecture-specific syscalls for instructions that do not correspond
directly to common PMK calls (e.g. accessing privileged special purpose registers). This class of

syscalls is implemented directly in the BSP-part of the PMK and is only available for the specific target
board.

In the other direction, the PMK provides virtualised IRQs. From the perspective of the guest, they look
like ordinary IRQs. The guest system can install handlers for specific IRQs, disable and enable them
and basically do anything one does with interrupts. Most of the virtual IRQs are very common. There
are for instance timer interrupts, interrupts from devices and error exceptions. Additionally, there are
very special interrupts not related to hardware events, namely interrupts indicating events in the

partition scheduling, e.g. “partition period start” or “new major time frame”.

Partition

Para-Virtualization Layer

Virtual IRQs System Calls

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 12 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

The XKY ecosystem includes building blocks to define guest personalities. A personality is a specific

design of a guest system including a partition operating system (POS) and a set of libraries defining
language bindings, a threading model, inter-partition communication and so on. The simplest
personality distributed with XKY is the Bare POS. The Bare is single-threaded execution environment

that provides a C API wrapping syscalls and a set of services for interrupt handling and time
management (e.g. “sleep”).

The standard personality for XKY is, of course, the ARINC 653 APEX which provides a rich set of

partition management services, process management services, error handling as well as inter-process
and inter-partition communication services.

But there are also other personalities; in fact new personalities can be easily built, for instance a
POSIX POS, an RTEMS POS, specific language bindings (e.g. C++, Ada, Rust or even scripting
languages like Python or Lua) and finally a POS with a virtualised general purpose OS like Linux.
Figure 2-5 shows schematically a possible “zoo” of personalities:

Figure 2-5: Guests

Of particular importance for inter-operability of complex systems is inter-partition and inter-module

communication. XKY implements several communication means. The most important is channels whose

endpoints appear in the ARINC 653 personality as queuing and sampling ports.

For local channels, i.e. for channels that connect partitions on the same computer, the PMK
implements the transport by means of memory copy, directly or, for larger amounts of memory (and if
available on the target board), DMA.

Data transport is, of course, subject to time partitioning. If the data cannot be copied within the

execution window, the procedure is interrupted and resumed when the partition regains the processor.
For application developers this means that the duration of the transport must be considered as part of
the timing requirements.

Channels can also connect partitioned applications with the outside world. One way to do that is PCIe.
The PCIe driver is implemented in the PMK. Data transfer through PCIe is therefore direct, i.e. data is
transferred as soon as the device is ready. Note, however, that for transferring data to the device, the
same qualification as for any memory copy applies: if the transfer does not fit into the execution

window, it is interrupted on partition context switch and resumed when the partition regains the
processor.

It is also possible to connect channels through common networks like Ethernet or AFDX (ARINC 664,
Part 7) or even through buses like ARINC 429, MIL-STD-1553, etc. Those alternatives are
implemented in a special kind of partition called IO Partition (IOP). Within the XKY configuration, the

corresponding channels are specified as ordinary channels from a port in a sending application

partition to a port in the IO partition or from a port in the IOP to a port in a receiving application
partition. This approach is not direct like the PCIe binding. Data is sent through the bus only when the
IO partition is scheduled, that means there may be a delay between the point in time when the
message is sent by the application and the point in time when it is actually put on the wire by the IO
Partition. Figure 2-6 depicts the principle of the IOP:

PMK

Hardware

Partition 1

APEX

Partition 2 Partition 3 Partition 4

other RTOS other OS Bare

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 13 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

Figure 2-6: IO Partition

XKY is distributed with an IOP that provides UDP over Ethernet out-of-the-box. It is sufficient to

configure the addressing for the ports in the IOP configuration; the actual sending and receiving is

done internally by the IOP. There is also an add-on for AFDX that works similar but uses AFDX instead
of Ethernet. It is further possible to provide a custom IO Partition that would use other networks or
buses. At GMV we have a considerable set of drivers (for aeronautics, space, automotive and other
use cases) that can easily be integrated with XKY.

Application IO Partition

PMK

Channel

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 14 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

3. USE CASE: DIMA

3.1. THE DIMA PROJECTS

The acronym “DIMA” stands for Distributed Integrated Modular Avionics. Distributed IMA, sometimes

called 2nd Generation IMA, is an emerging architectural pattern for avionics. It refers, here, to a
prototype for an advanced IMA platform developed by EMBRAER in cooperation with GMV during a
number of projects from 2014 until today, and ongoing. The platform provides:

 Flexible use of computing and IO resources;

 System-level interoperability;

 Reuse of application components;

 Reconfiguration (“plug & play”).

DIMA separates computing resources into two categories: Core Processing Modules (CPM) and Remote
Data Concentrators (RDC). CPMs are computers that consist of a CPU, memory and an IO interface to
connect the module to a network (typically AFDX). CPMs provide mainly computing power.

RDCs are IO-oriented computers that have a network interface (typically AFDX) and additional
interfaces for field buses. RDCs are usually installed outside the avionics bay close to the sensors and
actuators to which they connect.

CPMs and RDCs together establish a hardware platform to run complex, distributed software
applications. They can be seen as a computing “cloud” on which applications may be hosted. Partitions
in the CPMs run application components that perform the computing part of the job, often requiring
significant processing power and memory. Application components on the RDCs mainly control sensors
and actuators and perform data pre-processing.

An Attitude and Heading Reference System (AHRS), for instance, needs different sensors, e.g.
gyroscopes, accelerometers and magnetometers. The sensors are connected to an RDC (or, in fact, for

redundancy reasons to several RDCs). The RDC would pre-process the data and send the result to the
AHRS core system hosted on a partition in a CPM. That component would use the incoming data to

compute attitude, pitch, yaw, roll and so on in the given frame of reference applying Kalman filters or
other techniques. It would further process and transfer the data to present them on an HMI in the
cockpit display system (CDS).

The concrete mapping of software to hardware is controlled by the configuration. The configuration
defines where application components are hosted, what kind of sensors are available and to which

RDCs they are connected; but the configuration has also to ensure that the system interoperates
correctly as a real-time system. In other words, the partition scheduling of all CPMs is part of the
system configuration; likewise the HM tables of all computers and the channels that connect
partitioned application components and the network routes that provide external links between
modules and RDCs. For a realistic avionics system the configuration consists of thousands of items
that must all fit together.

For safety reasons the configuration is static and defined at design time. This, however, leads to a
system that cannot be reconfigured. But there are scenarios where reconfiguration is highly desirable,
for instance:

 Different missions of the same system may require different payloads;

 Different phases of the same mission may require different workloads from different subsystems;

 Varying spare parts may require different drivers and imply changes in timing requirements;

 In case of a device failure, the system may need to downgrade to still be operable (e.g. for

improving aircraft dispatchability).

The DIMA platform solves this dilemma by means of multi-static reconfiguration. That means that
there is a set of static configurations, from which the most appropriate one is selected at system start.
(For safety reasons, inflight reconfiguration is not allowed.)

In the selection process, the components of the system (CPMs and RDCs) share their view of the
system state and try to reach a common view using a consensus algorithm. When consensus is
reached and if there is a valid configuration for that system state, all components will select the same

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 15 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

setup and apply the relevant configuration part to themselves. Applying the configuration potentially
implies rebooting the whole computer or stopping some partitions and starting others and then
switching to another partition schedule.

Finally, the network configuration must be changed. To make sure that this happens only once, a

leader is selected that will apply the network change. The leader selection process is also based on a
consensus algorithm and is repeated, whenever the current leader fails for some reason. Figure 3-1
shows a screenshot from the Configuration View of the DIMA demonstrator (see Section 3.2):

Figure 3-1: Configuration View in the DIMA Demonstrator

In the upper frame four CPMs are shown (#1 - #4). In this concrete situation, all CPMs are available
and consensus has been reached. The leader is CPM #1. The selected configuration is the one with the

identifier 27.

Each of the four CPMs hosts three to four application components: the PSS (which we will discuss in a
minute), an IO Partition and at least one payload-related component; CPM #1, for instance, hosts a
part of a software-defined radio application (SDR); CPM #2 hosts a fuel tank control application and a
performance calculation program (PCA) which computes the flight envelope. CPM #3 hosts the GPS
and another component of the SDR. Finally, CPM #4 hosts the other fuel tank controller and a

redundant PCA replica. (Notice that for applications that consists of several components or redundant
replicas there also are leaders and followers. For brevity, we will not discuss such details here.)

In the lower frame four RDCs are shown, each connected to a payload. There are two RDCs (#1 and
#2) that are connected to fuel tank sensors; #3 is connected to a GPS receiver and #4 is connected
to the SDR.

The Configuration View shows that all components are in a consistent state. For each payload handled
by an RDC there is at least one application component hosted on one of the CPMs that handles this

payload. Furthermore, all CPMs have detected the same system state, i.e. the same set of payloads,
as the column “Detected Payloads” in the upper frame indicates.

The reconfiguration framework is also a good example for system-level interoperability and

component reuse. The reconfiguration logic including the consensus algorithm is implemented in a
component called Payload Supervisor (PSS). This component is hosted on all CPMs; the supervisors
communicate with each other to reach a common system view, select the leader and perform the
reconfiguration activities. The PSS, this way, is a component that makes the set of computers work

together as a system. We can observe that the system performs reconfiguration as if it was one single
application.

At the same time the PSS is a reusable component. It fulfils a clearly defined task in a system and can
be used in any application that needs this capability. There are many more candidates for such
reusable components; in fact, all components shown in Figure 3-1 may, to some extent, be reusable.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 16 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

3.2. THE DIMA DEMONSTRATOR

In the course of the DIMA projects, GMV and EMBRAER implemented a number of demonstrators to
provide a proof-of-concept for the DIMA platform. The main demonstrators are a lab demonstrator
and a flight demonstrator. The flight variant was used in a model aircraft (see Figure 3-2).

Figure 3-2: Avionics Bay of the Flight Demonstrator

We will focus here on the lab demonstrator, because the flight demonstrator consists of only two CPMs
and two RDCs. The lab demonstrator, on the other hand, consists of

 Four CPMs running on Freescale PowerPC P1010 boards;

 Up to seven RDCs running on BeagleBone Black boards (ARM Cortex-A8);

 Up to seven payload components, some with real sensors and actuators, some with simulations

running on Arduino boards, namely

­ Fuel Tank sensors (simulated)

­ A weapon system, “Bombs” (simulated)

­ Gyroscope (real sensor)

­ Global Positioning System (real receiver)

­ Camera System (real, with remotely actuated gimbal)

­ Software Defined Radio (real, including FPGA board).

The CPMs run XKY with three to four partitions each: the PSS (A653 APEX), one or two application

components (A653 APEX) and an IOP. Note that there were sufficient memory and processing
resources left to host more applications on the CPMs. But for the purpose of the demonstrator that

was not necessary.

We also used alternative set-ups where the CPMs were hosted not on PowerPC boards, but on Beagle
Bones. The reason for this was just pragmatic: for demonstration outside our facilities we didn’t want

to move the relatively expensive Freescale boards around. Instead we used the much cheaper
BeagleBones for such occasions. (In the course of the DIMA projects, we managed to destroy, in one
way or the other, several boards. Therefore, having XKY BSPs for cheap toy boards available proved to

be valuable).

The RDCs run RTEMS. The reason, again, was purely pragmatic. Many drivers are already available for
RTEMS and so we did not need to develop new drivers for those cases.

The pieces are connected by a conventional Ethernet network.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 17 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

Figure 3-3 shows one possible configuration of the Lab demonstrator:

Figure 3-3: Possible Configuration of the Lab Demonstrator

There are some constraints that limit reconfiguration, for instance:

 The fuel tank payloads must be connected to an RDC close to the tanks (which in the lab
demonstrator were, of course, just assumed to exist);

 The gyroscope must be connected to an RDC close to the centre of gravity of the aircraft;

 Some payloads, for instance the camera (which is not a realistic payload for a civil aircraft, but
more likely for a UAV), make sense only at the nose of the aircraft.

Despite such constraints, there are 27 possible configurations for the lab demonstrator. The
configurations take different combinations of payloads into account, but can also deal with missing
RDCs or failure of single CPMs. If an RDC is missing the payloads supposed to be connected to that
RDC would be removed from the CPMs. On the other hand, if a CPM is missing or fails during the
configuration phase, essential applications that were configured to run on that CPM would be re-

hosted on other CPMs. (“Re-hosting” here means, of course, to activate another configuration that
foresees this new mapping of applications to CPMs.)

When a payload is changed, the CPMs (i.e. the PSS running in the CPMs) would stop the partition that
hosted the controller for the removed payload, start the partition containing the controller for the new
payload and switch to another schedule. For this to happen the PSS has supervisor privileges; it is

able to stop or reboot the module, to start or stop partitions and to change the module schedule (see
Part 2 of ARINC 653, “Multiple Module Schedules”).

The XKY OS allows defining advanced privileges at a fine grain. This is part of the normal partition

configuration. Usually a partition is not allowed to change or even see the state and settings of other
partitions. A partition must be explicitly configured to grant it the power to control its peers.

A concrete example of changing a payload is the gyroscope. There is indeed a valid configuration
without a gyroscope; needless to say that this is not a realistic scenario for a real airplane, but for the
lab demonstrator we decided to add this possibility. If no gyroscope is connected, the system is

unable to compute attitude and heading. It may still perform other tasks, though, like controlling the
camera payload.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 18 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

When the gyroscope is plugged in to an RDC, the system reconfigures and starts the AHRS. The
system, now, is aware of attitude and heading and is able to simulate a cruising airplane. This is
reflected in the DIMA main HMI:

Figure 3-4: Main HMI Window – DIMA in Flight

The simulated airplane in Figure 3-4 is leaning to the left. In the simulator this is not achieved by
steering, but by manipulating the gyroscope. Without this sensor connected, the simulator would

always show the horizon parallel to the top- and bottom border of the window. In the configuration

that is shown here, the fuel tank sensors (which are part of the default configuration) were removed
in favour of the “bombs”, which are shown to the left and the right of the centre. As can be seen in
the bottom-right corner, the GPS receiver is connected to the system and correctly reports the
position of the simulated aircraft.

The lab demonstrator was used for demonstrations in-house and at EMBRAER facilities. It will be the
basis for more complete and more advanced simulations in the future adding essential parts of a real

flight system. It is also planned to add GPU support for fast numerical computation and, with this,
implement on-board components for autonomous systems like obstacle recognition and collision
avoidance.

The flight demonstrator flew twice in August and September 2018. The flight was controlled remotely
by a trained UAV pilot. During a short timeframe while cruising, the remote control was interrupted
and the model flew autonomously for several minutes. At the end of the second flight an accident
happened; the model crashed from about two metres during landing. This, however, was not related

to the DIMA-driven avionics, but due to strong wind gust at that day.

During the DIMA-2 project a master thesis in Aeronautical Engineering was written [RD.1]. The thesis

puts the DIMA projects into context with aeronautical research and development, describes the
demonstrators in detail and draws some conclusions. The future work proposed by the thesis had
strong influence on the planning of the next DIMA activities.

EMBRAER and GMV consider the DIMA projects successful and will continue the cooperation on

Distributed IMA in the near future.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 19 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

For GMV the DIMA projects also provided an optimal opportunity to use XKY in a non-trivial

environment. We are proud to conclude that XKY mastered the challenges very well. In the course of

the projects, XKY was deployed on different hardware and hosted very divergent applications, both

intense in computation and in communication through ARINC 653 channels and through an Ethernet
network. No particular difficulties were imposed by the choice of the XKY RTOS. On the contrary,

thanks to strict compliance with standards, software development and porting of reusable components
already developed internally at EMBRAER was easy and painless. An important milestone for us was
the XKY maiden flight in August 2018. This is evidence that we are able to increase the Technology

Readiness of the XKY RTOS very soon. The XKY development team is now looking forward to the next

challenge.

Code: xky-wp-1

Date: 15/04/2020

Version: 1.0

Page: 20 of 20

XKY © GMV, 2020; all rights reserved XKY Whitepaper

END OF DOCUMENT

