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1 INTRODUCTION

1.1 PURPOSE

DIANA was a research and technology development project funded through the
European Commission in the scope of the Sixth Framework Programme (FP6). It aimed
at the implementation of a new avionics platform based on the concepts of Integrated
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture
for Independent Distributed Avionics) proposes a series of novelties that ease on-board
software development. These novelties consist in both: new tool concepts and new run-
time technologies. In terms of tools, AIDA proposes

e To base development of critical on-board functions on model-based engineering
for early validation and verification of architectures as well as for automatic
generation of code and configuration artefacts;

e To use formal methods for early validation and verification of algorithms.
In terms of new run-time technologies, AIDA proposes
e A new concept of software components that provides

o Basic services and composed services (consisting of a collection of
components);

o Partition- and module-local services and platform-wide services;

Those service components are described by configuration files and provide well-
defined interfaces; as such they can be offered by different suppliers and can be
plugged into a system at different physical locations without affecting application
code.

The components extend the ARINC 653 specification to the platform level and,
at the same time, they use ARINC 653 basic services (defined in part 1 and part
2 of the specification) to implement the advanced features they provide.

e A new communication paradigm based on the Publish and Subscribe
architecture; in the scope of DIANA, a Publish and Subscribe library was
implemented on top of ARINC 653 that follows the specification of the Object
Management Group’s (OMG) Data Distribution Services (DDS).

e New Reconfiguration approaches, based on the DDS library for in-flight
reconfiguration and, for pre-flight reconfiguration, based on an innovative
concept, called Multi-Static Reconfiguration (MSR) that is able to improve
availability of aircrafts without increasing the amount of hardware.

e The use of object-oriented programming languages and virtual machines (VM)
executing applications. The project implemented a Java virtual machine, based
on Atego’s PERC Pico Safety Critical Java VM. This VM was completely ported to
ARINC 653.

In the scope of the DIANA project two demonstrators were built to validate the concepts
and their implementation. Both demonstrators use safety-critical avionics applications
that had been developed with real on-board requirements. One of these demonstrators
was based on a Flight Warning System (FWS), developed by THALES, and the other was
based on an Environmental Control System (ECS), developed by Dutch National
Aerospace Laboratory (NLR). Both demonstrators run on a heterogeneous system
consisting of real target Power PC (PPC) boards and Intel-based desktops. On the PPC
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boards, the demonstrators used Windriver's VxWorks 653 Safety Critical Platform; on
the desktops, the FWS used VxSim, a host-based simulator part of the VxWorks 653
tool chain, and the ECS used SIMA, GMV’s ARINC 653 simulator.

This document describes the use of SIMA in the ECS demonstrator. In section 2, a
short overview on the SIMA execution environment is given. In section 3, which is
based on contributions by NLR, the ECS Application is presented. In section 4, the
integration of the application with the AIDA components is described. In section 5, the
extended set-up of the demonstrator at the exhibition of the Avionics Event in
Amsterdam 2010 is shown. Section 6, finally, presents some conclusions.

1.2 ACRONYMS

ADIRU Air Data Inertial Reference Unit

AIDA Architecture for Independent Distributed Avionics

API Application Programming Interface

APEX Application Executive

ARD Application Requirements Descriptor

ARINC Avionics Radio Inc.

BITE Built-In Test Equipment

CDS Cockpit Display System

COTS Commercial Off-The-Shelf

CPIOM Core Processing Input/Output Module

CPM Core Processing Module

CPU Central Processing Unit

DAL Development Assurance Level

DDS Data Distribution Services

DIANA Distributed Equipment Independent environment for Advanced avionics
Applications

EC European Commission

ECS Environmental Control System

ESA European Space Agency

EU European Union

FAA Federal Aviation Administration

FIFO First-In/First-Out

FWS Flight Warming System

GCC GNU Compiler Collection

GPL General Public License

HMI Human Machine Interface

HW Hardware

© GMV, 2010; all rights reserved SIMA in DIANA
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IMA
IDE
LIFO
MDA
MDB
MOS
MSR
NPTL
OMG
0s
PC
PBIT
PDD
PIM
POS

PowerPC

PPC
PSM
POSIX
RTOS
RTSJ
SCIT
SIMA
SDD
SW
VM

Integrated Modular Avionics
Integrated Development Environment
Last-In/First-Out
Model-Driven Architecture
Model Based Development
Module Operating System
Multi-Static Reconfiguration
Native POSIX Thread Library
Object Management Group
Operating Systems

Personal Computer

Power-up Built-In Test
Platform Definition Descriptor
Platform Independent Model
Partition Operating System

Performance Optimisation With Enhanced RISC
Computing
PowerPC

Platform-Specific Model

Portable Operating System Interface
Real Time Operating System
Real-Time Specification for Java
Safety-Critical Java Technology
Simulated Integrated Modular Avionics
Service Definition Descriptor

Software

Virtual Machine
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1.4 INDEX OF COTS

Name. Description Vendor

APERO Avionics Prototyping Environment for Research and NLR
Operations
AVT ARINC 653 Validation Test Suite; implementation of the GMV
ARINC 653 Part 3 - Conformity Test Specification
EuroSim Real-Time Simulator with person or hardware in the loop NLR, DutchSpace, TASK24
GNU Gnu is Not Unix. Free Operating System Software. Free Software Foundation (FSF)
PERC Pico Safety Critical Java Virtual Machine. Atego
PikeOS ARINC 653 compliant RTOS SYSGO
SIMA ARINC 653 RTOS simulator for Linux GMV
Simulink Environment for multi-domain simulation and model-based MathWorks
design form dynamic and embedded systems
Vincent Prototyping tool for glass cockpit displays NLR
VxWorks 653 ARINC 653 compliant and DO-178B-certifiable RTOS Wind River
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2 SIMA OVERVIEW

Simulated Integrated Modular Avionics (SIMA) is an execution environment, providing
the ARINC 653 Application Programming Interface (API) and robust partitioning to
operating systems that do not support these features by themselves. SIMA is designed
to run on all POSIX-compliant OSes; it is tested and optimised for the Native POSIX
Thread Library (NPTL), available on OSes like GNU/Linux, kernel version 2.6 or higher,
and for RTEMS, version 4.6 or higher.

The ARINC 653 standard ([AD.1], [AD.2]) specifies a programming interface for a Real-
Time Operating System (RTOS), and, in addition, establishes a particular method for
partitioning resources over time and memory. Today, this standard has been established
as an important foundation for the development of safety-critical systems in the avionics
industry.

ARINC 653 defines support for robust partitioning in on-board systems, such that one
processing unit, usually called a module, is able to host one or more avionics
applications and to execute these applications independently. This can be achieved if the
underlying system, often called the Module Operating System (MOS), provides
separation of the avionics applications, such that

e Each partitioned function has guaranteed access to the processor. The
guarantees shall reflect the frequency as well as the execution time of the
specific application;

e A failure in one partitioned function cannot cause a failure in another partitioned
function.

In consequence, the partitioning approach allows reducing on-board hardware and, at
the same time, eases verification, validation and certification.

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to
a program in a single application environment: it comprises data, code and its own
context configuration attributes (see Figure 1).

| Partition

T Program

\PI’OCGSS

Cabinet
Module

Figure 1: Partitioning

Partitioning separates applications in two dimensions: space and time. Spatial
separation means that the memory of a partition is protected. No application can access
memory out of the scope of its own partition. Temporal separation means that only one
application at a time has access to system resources, including the processor; therefore
only one application is executing at one point in time - there is no competition for
system resources between partitioned applications.

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution

© GMV, 2010; all rights reserved SIMA in DIANA
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window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues
execution from the point it was previously preempted.

Processes within the scope of a partition are scheduled by a priority-based preemptive
scheduler with first-in-first-out (FIFO) order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653,
processes within the same partition share the same address space. There is no memory
separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other’s memory. Communication between
processes in different partitions is achieved by ports and channels. Ports are
communication end points either for reading or writing that are identified by a name
that is unique in the scope of the partition. Channels connect these ports transparently
to application code.

In SIMA, ARINC 653 partitions are mapped to POSIX processes and ARINC 653
processes are mapped to POSIX threads. Each SIMA application is, hence, linked to a
single POSIX program, containing user code and data, the APEX code and data and,
finally, the platform execution environment, i.e. the NPTL for Linux.

The Module Operating System (MOS), controlling the different POSIX processes,
belonging to the same simulated module, is likewise linked to one POSIX process. The
following picture illustrates this design:

Application Application Application
Posix (NPTL) Posix (NPTL) Posix (NPTL)

Figure 2: SIMA Architecture

The APEX services are implemented by a static library, called POS. The POS implements
the APEX process scheduler on top of the POSIX FIFO scheduler (sched_fifo). POSIX
features are encapsulated within a core layer; this way main parts of the APEX code do
not rely directly on POSIX, but on scheduling policies implemented by the POS itself.
The advantage of this approach is enhanced portability - there is even an
implementation of the SIMA POS, running on bare hardware - and the fact that
scheduler features that introduce subtle differences between different POSIX
implementations are handled in the core layer and hidden from the APEX
implementation.

The MOS implements the APEX partition scheduler. To be able to suspend and resume
partitions, commands are exchanged with the POS layer in the partitions using signals
and shared memory segments. Obviously, this approach does not answer safety and
security threats, caused by random errors in the partitioned code. The POS has to
respond correctly to the given commands which it may fail to do in the case where
faulty or malicious application code has corrupted the state of the POS. In fact, the POS
was designed and developed, following safety critical software guidelines; its purpose is

© GMV, 2010; all rights reserved SIMA in DIANA
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to support embedded applications. The MOS, however, was not; the MOS does only
simulate the behaviour of an ARINC 653 compliant OS on top of non-safety aware
systems like standard Linux.

POS and MOS are designed to support real-time applications. They use the real-time
programming interfaces of the POSIX thread library, like FIFO scheduling and thread
priorities. Additionally, all memory used during execution is created during initialisation
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages
in and out. However, hard real-time guarantees cannot be met without a fully
preemptive operating system kernel. If hard real-time is wanted, the PREEMPT-RT patch
by Ingo MéInar and Thomas Gleixner can be used to achieve guarantees for very short
deadlines.

ARINC 653 queuing and sampling ports are mapped to UDP ports. This way, ports can
be flexibly linked to other ports on the same virtual module or to external resources
represented by a pseudo partition. Alternative mappings, e.g. to TCP/IP or even to I/O
devices and protocols, can be defined by means of user callbacks.

For visual control over the execution of ARINC 653 applications on SIMA, the simout tool
is provided. The simout program shows the output of the MOS and up to six partitions in
a graphical environment based on the ncurses library. The following figure gives an
impression of a module with five partitions running in the simout environment:

1 - Control z - Durmy 1 3 - Durmy 2
Message invalid 0000025712 600000 0000032 744000000
Value: 157114040, state: DEC 00000301 12800000 0000052944100000
Can't read sawpling port 'SENSOR_SMP': 1 000003051 3000000 0000033 144200000
Message invalid 00000308 15200000 000003333 4400000
Value: 157114040, state: DEC 000003 13 13400000 0000033 524500000
Can't read sawpling port 'SENSOR_SMP': 1 000003 1713500000 000003372 4600000
Message invalid 0000032 113700000 000003392 4500000
Value: 157114040, state: DEC 000003251 3900000 000003412 45300000
Can't read sawpling port 'SENSOR_SMP': 1 0000032514100000 000003432 5000000
Message invalid 0000033304300000 000003452 5100000
Value: 157114040, state: DEC 0000033 654 600000 000003472 5300000
Can't read sawpling port 'SENSOR_SMP': 1 0000034054800000 000003492 5400000
Message invalid 0000034485100000 000003512 5500000
Value: 157114040, state: DEC 0000034585400000 000003532 5600000
Can't read sawpling port 'SENSOR_SMP': 1 000003 5285600000 000003 552 5500000
Message invalid 0000035 685500000 000003 5725500000
Value: 157114040, state: DEC 000003 5086100000 000003 592 6000000

4 - Dury 3 5 - System
0000028512500000 0000028572500000
000002981 2700000 0000028772 600000
00000303 12900000 0000030372800000
0000030715 100000 0000030573000000
000003 1113200000 000003 1175500000
000003 1515400000 000003 1375400000
000003 1813 600000 000003 1873700000
00000323 13800000 0000032 173800000
00000327 14000000 0000032774100000
0000033 114200000 0000032574200000
0000033454 500000 0000033 554500000
00000335584700000 0000033754700000
0000034285000000 00000343 55000000
0000034 685200000 0000034555200000
000003 5085500000 000003 5155500000
000003 5485700000 000003 5355700000
000003 558 6000000 000003 585 6000000

0 - Control
[0000035140800000] Switching to 104 for 0.100000000 seconds; =ssigned to partition Control in operating mods NORMAL
[0000035240800000] Switching to 402 for 0.30000000 seconds; =ssigned to partition Dumoy 3 in operating mode NORMAL
[0000035270800000] Switching to 304 for 0.30000000 seconds; =ssigned to partition Dumoy 2 in operating mods NORMAL
[0000035300800000] Switching to 504 for 0.40000000 seconds; assigned to partition System in operating mode NORMAL
[0000035341000000] Switehing to 101 for 0.100000000 seconds; =ssigned to partition Control in operating mods NORMAL
[0000035441000000] Switching to 201 for 0.30000000 seconds; =ssigned to partition Dumoy 1 in operating mods NORMAL

Figure 3: Partition Visualisation
The ARINC 653 services that are currently implemented by SIMA are:
e All required services defined in Part 1 of the specification:
o Partition Management Services;
o Process Management Services;

o Time Management Services;

© GMV, 2010; all rights reserved SIMA in DIANA
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o Health Monitoring Services;
o Intra-Partition Communication Services;
o Inter-Partition Communication Services;
¢ Some extended services defined in Part 2 of the specification:
o Multiple Module Schedules;
o Logbook System.

More extended services of Part 2 are under development, in particular:

e File System;

e Service Access Points;

e Naming Services;

e Sampling Port Extensions;

e Memory Blocks.

SIMA in DIANA
Draft 0.7
Page 11 of 32

For more information on the SIMA simulation environment, please refer to [AD.6] and [AD.7]
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3 THE ECS APPLICATION!

In the scope of the DIANA project, a case study was defined that involves a real-life
scenario of an environmental control - or air conditioning - system. A scenario was
defined that was easy to understand, but sufficiently complex to serve as a
representative use case for AIDA. The case study focuses on a generic air conditioning
system representative of systems currently in use on regional and long-distance air
transport aircrafts.

Note that an actual environment control system involves more subsystems than
discussed in this document. For simplicity, the description of the system is limited to the
subsystems relevant to the case study.

The ECS involves the following avionics systems, see Figure 4:
e Air conditioning panel;
e Zone controller;
e Pack controller;
e System display.

The air conditioning pack is regulated by the pack controller to supply the mixing unit
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones.
In order to regulate the temperature of this airflow, the zone controller regulates the
amount of hot air added to the flow of cool air.

Zone controller

feeds the required Pack controller

aft zone pack outlet controls air

temperature to the conditioning pack
pack controller

System display
displays temperature ]
Air conditioning panel

temperature control

Figure 4: Air conditioning system?

' This section is based on contriubutions by NLR.
2O NLR, 2010, all rights reserved
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Air conditioning panel

The desired temperature in the cabin zones and in the cockpit can be manually selected
on the overhead panel by the pilot. The pilot may increase or decrease the temperature
in order to obtain the desired temperature. This is depicted in Figure 5.

AIR FLOW HOTAIR 1 HOTAIR 2 CABIN AIR

NORM LKI* T LABII’ E):TRHLT
LO HI | @
b, e

FAGK ot pF <HoT COLD: (um F'"'""’.,

X ELEED

| |

AUTO

CLOSE OPEN
ENG 1 BLEED ENG 2 BLEED APU BLEED @- ENG 3 BLEED ENG 4 BLEED

B 8 B E &

Figure 5: Air conditioning panel3

Zone controller

The temperature selections on the air conditioning panel of cockpit, forward and aft
cabin are read by the zone controller. The zone controller regulates zone temperatures
to match temperature selections on the air conditioning panel for cockpit, forward and
aft cabin. It is responsible for setting the pack discharge temperatures thereby
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim
air to the zone inlet ducts it keeps the temperature as requested.

Zone control is divided into separate control functions for each zone of the aircraft. Each
control function has the following inputs:

e Temperature selection (from air conditioning panel);

e Zone temperature (measurement in each zone);

e Air duct temperature (measurement in each duct for each zone);
e Aircraft altitude (from ADIRS).

Each function calculates the desired temperature of the mixer unit, the lowest
temperature demand will determine the actual mixer unit temperature. In addition, each
function calculates the desired amount of trim air to be added to the air duct in order to
obtain the required duct demand temperature. The outputs of each function therefore
are:

e Desired mixer unit temperature;
e Trim air demand.
Pack controller
The zone controller feeds the required pack outlet temperature to the pack controllers.

The pack controller then sets the water extractor outlet temperature in accordance with
demands from the zone controller, by modulating the ram-air doors and by-pass valve.

® © NLR, 2010, all rights reserved
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For safety reasons, the pack controller is redundant. When the primary pack controller
fails (as detected by the pack controller Build-In Test Equipment (BITE)), the secondary
pack controller takes over (see Figure 6).

OUTPUT
INPUT ——
zone controller €¢——
isolate pack
INPUT — OUTPUT

Figure 6: Redundant pack controllers®

Pack control is divided in flow control and temperature control functions. The flow
control function takes the desired pack flow and regulates the pack flow valve. Its input
is:

e Pack flow demand (from air conditioning panel).
Its output is:
e Pack flow valve setting.

The pack temperature control function regulates the pack temperature by modulating
the by-pass valve and ram air doors. Its inputs are:

e Pack outlet temperature (measurement);

e Pack temperature demand (from mixer control).
Its outputs are:

= Ram air in demand;

= Ram air out demand;

= By-pass valve setting.

*© NLR, 2010, all rights reserved

© GMV, 2010; all rights reserved SIMA in DIANA



SIMA in DIANA
Draft 0.7
INNOVATING SOLUTIONS Page 15 Of 32

System Display

On the system display, the cruise page monitors the cabin temperature and pressure
and informs the pilot about the actual temperature in the cockpit and cabins (Figure 7).
The cruise page provides the pilot some basic information from the air conditioning

page.

Figure 7: AIR section of Cruise page5

*© NLR, 2010, all rights reserved
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4 THE DEMONSTRATOR INTEGRATION

4.1 AIDA COMPONENTS

AIDA ([AD.8]) is an IMA-based platform, backward compatible with the ARINC 653
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at
highest DO-178B/C DAL level and commercially available today. AIDA enhances aspects
of ARINC 653 and the current state-of-the-art in IMA, namely it improves the neutrality
of the IMA execution environment regarding the underlying hardware and operating
system; it enhances the location transparency and it supports a development and
integration process based on model-driven engineering and formal methods. The
following figure gives an overview on the AIDA architecture:

[ ARD = [ARD J [ ARD Jrmmm [ ARD ]
SCJApp || {| SCJApp |
CApp : Ada App !
| VM | | VM |
CAPI Java API Ada API JavaAPI
AIDA AIDA AIDA AIDA
Broker Broker Broker Broker

[T ADRRS
AB53 Broker
r_ || Required AIDA AIDA
Device and Local AIDA Health
Drivers || Extended || Services P Monitor
Services Services
BIT

RTOS / Partition Kernel

Board Support Package

Hardware/ Hardware Simulation

Figure 8: AIDA Architecture

The basic building blocks in the AIDA platform are partitions as defined in the ARINC
651 and 653 standards. Partitions are fault and change containment units and as such
relevant for incremental certification of applications and services as well as for
application deployment and reuse.

Three kinds of partitions, defined by their language binding, are supported: C, Ada and
Java partitions. In general, it is forbidden to mix languages at application level within
one partition. Concerning Java, this requirement is relaxed. The compilation model of
the Java execution environment foresees an automated conversion to C code;
moreover, Java applications interface directly with the C code of those AIDA middleware
components that are directly linked into the partition.

© GMV, 2010; all rights reserved SIMA in DIANA
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Applications rely on the ARINC 653 API. Additionally, they can and shall use services
defined by the AIDA middleware to invoke local or remote services and to exchange
data, based on the publish/subscribe paradigm.

The API level of the middleware is based on ARINC 653 and - logically - hosted as layer
in the partitions. Note that RTOSes may implement this architecture differently;
VxWorks 653, for instance, does not instantiate the partition operating system (POS)
once per partition; instead the POS is linked to the partition’s virtual address space. This
is depicted in Figure 8 by separating A653 services in an own partition.

Other components, namely, the AIDA platform services, the AIDA broker, responsible
for remote invocation and data distribution services, the reconfiguration services (Boot
Switcher, System Manager) and the System Health Monitor may be placed in separate
partitions. In Figure 8, this is depicted by placing a layer of partitioned platform
components below the application layer.

The elements of the AIDA architecture, such as services, platform and applications, are
controlled by configurations given in descriptors. Applications are defined by their
requirements (memory, time resources, services) collected in the Application
Requirements Descriptor (ARD). Services are defined by the resources they provide,
captured in the Service Definition Descriptor (SDD). The platform as a whole is defined
in terms of applications and services on one hand and available hardware resources on
the other. This information is collected in the Platform Definition Descriptor (PDD) that is
made available through dedicated services.

The descriptors are generated from a model-based tool chain. The model engineer first
defines a platform independent model which describes application components,
communication channels, provided and requested services, message formats and so on.
This high-level architecture is then mapped onto the platform, i.e. to hardware nodes,
partitions, communication buses, etc. In contrast to general purpose modelling
approaches that are based on automatic transformations, this mapping is done
interactively using the PIM-PSM Mapping editor. During the mapping process, the
system-wide architecture is broken down to modules and their partitioning layouts. The
output of the process is a description of the mapping of the architecture to the platform,
hence, a new model, but also configuration items on module level for different operating
system (currently, VxWorks and SIMA) describing memory layout, partition schedules,
connection tables and the location of service components. The tool also generates glue
code needed to link the components together.

On porting the ECS application to the AIDA platform, a set of components had to be
integrated into the development tool chain and into the run-time environment. Figure 9
gives an overview on the components that were used during demonstrator integration:
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Figure 9: AIDA Components
The components are:

e The ECS application;

e The SIMA execution and development environments;

e The VxWorks execution and development environment;

e The AIDA Mapping Editor that defines a mapping of high-level architecture
models to the platform;

e The AIDA Java VM that was implemented using Atego’s Safety Critical Java VM
PERC Pico;

e The AIDA Logbook System; this is a remote service that provides logbooks
similar to ARINC 653 Logbooks (described in part 2 of the standard). The
logbooks as well as the client applications that use these logbooks are location
transparent. Logbook and application instances can be hosted on different nodes
in the system. Schedules, memory resources and communication lines are
configuration controlled and the necessary artefacts like configurations and glue
code are generated by the model-based tool chain;

e The AIDA Reconfiguration Engine, based on Multi-Static Configurations; this is a
platform-wide service that allows the re-hosting of applications in case of
hardware failures on start-up.
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e The AIDA Broker; this is a set of components, implementing the DDS
communication infrastructure; the component is not further described in this
document.

4.2 DEMONSTRATOR ARCHITECTURE

The ECS components were implemented on three computers, two Intel-based desktop
computers running SIMA on top of Linux, and one PPC on-board computer. Additionally,
a Concurrent real-time Linux system was used to host an environment simulator. The
simulator was connected to the ECS system by means of a standalone SIMA application
that uses the ARINC 653 API, without time partitioning (ECS Plant Bridge). Two
Windows-based desktop computers served as display and control station and
development host, respectively. Figure 10 depicts this architecture:
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—

Windows XP
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Linux [ Windows XP ]

Figure 10: Demonstrator Architecture®

The computers were connected by two networks: an avionics network for application
interoperability and a test network that was used for measurements, test execution and
component deployment.

For the environment simulator the EuroSim [AD.9] simulation framework was used. The
display system is based on the glass cockpit emulator Vincent.

Note that Figure 10 does not show the complete mapping of all components (e.g.
logbooks) to modules and partitions. The reason is that the demonstrator uses muilti-
static configurations, i.e. several pre-defined mappings for the case of hardware failures
during start-up. There is, hence, not one mapping of components to hardware nodes
and partitions, but a set of such mappings. Complete descriptions are given below in
section 4.6.

The following photo gives an impression of the ECS test bench:
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Figure 11: Demonstrator Test Bench’

The computers on this picture are (from left to right):

Target 2-PC;

Target 3-PC;

The PPC development board for the VxWorks system (Target 1-PPC);
The display control station, running Vincent;

The real target computer (used as Target 1-PPC for demonstration purposes).

"© NLR, 2010, all rights reserved
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4.3 THE AIDA DEVELOPMENT ENVIRONMENT

The AIDA tool chain is quite complex. It comprises artefacts on the system-wide
platform level, the module level and the partition level. Moreover, it integrates tools
from different vendors such that output from one set of tools has to match the expected
input of another set of tools. See Figure 12 as an illustration of the SIMA-based tool
chain:

L Platform

|
I
|
|
L Module

Standard
Definition

Figure 12: AIDA Toolchain for SIMA
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The top-most input to the tool chain is the Platform Independent Model (PIM) that
describes the system on architecture level. The PIM is mapped onto the available
hardware and the ARINC 653 platform. This is done by means of the mapping editor, a
tool developed in the scope of the DIANA project. The output of the tool is a set of
configuration and code artefacts that are introduced into the target platform tool chains.
In particular, the mapping tool creates an ARINC 653 standard configuration file and the
SIMA-specific configuration file. The configuration files have module scope, but the
further processing of the configuration in the development tool chain enters directly the
application (i.e. partition) level. Note that the configuration is used also during execution
of the module, but this is of course not visible in this figure.

A set of code artefacts is needed for ports and logbooks; these artefacts are created by
the makebooks and makeports tools from the SIMA tool chain.

The application-specific C code may come from different sources. In the case of Java
applications, the C code is generated by PERC Pico-specific tools.

For applications, written directly in C, this code is generated by human engineers or
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada-specific tool is
shown in the figure.

When all C artefacts are created the tool chain flows into the standard GNU compile
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries,
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual
Machine) and AIDA (Java APEX API, Logbooks middleware, Broker middleware and so
on).

The lower part of the process, the partition level, is iterated over all partitions in the
system. Note that for multi-static configurations, the process has to be additionally
iterated, on platform level, over all configurations. This step is not shown in Figure 12 to
keep the diagram readable.

4.4 JAVA ON ARINC 653 APEX

The porting of PERC Pico to the ARINC 653 APEX interface raises few difficulties
concentrated on very few points, such as threading and priority inheritance, in particular
[AD.5]. PERC Pico relies on a simple memory model, a set of annotations, and a
powerful static verification tool. It compares advantageously to solutions based on
Scoped Memory, a concept proposed by the Real-Time Specification for Java (RTSJ), in
particular when modularity and runtime safety — or, the other way round, testing effort
— are concerned.

PERC Pico supports the scheduling model proposed by the Safety-Critical Java
Technology (SCJT), which is fixed priority pre-emptive scheduling with FIFO order within
priority and with the priority ceiling emulation protocol as priority inversion control
mechanism.

The implementation of this scheduling on top of APEX can be problematic. The main
problem with APEX (and with many other operating system), is the absence of the
priority ceiling emulation protocol for locks.

For making up this limitation and implementing correctly the Java scheduling model on
top of operating systems such as APEX, PERC Pico does not use a one-to-one mapping
for scheduling and consequently a Java thread is not equivalent to an APEX process.
PERC Pico handles the scheduling of Java threads internally.
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Fully controlling the scheduling of Java threads allows PERC Pico scheduler to guarantee
a bounded execution time for every Java synchronisation mechanism (synchronized
methods and wait/notify/notifyAll operations).

Automatic Garbage collection technologies are not considered certifiable for the moment
since the memory heap, which is modified concurrently by multiple threads and the
garbage collector itself, is too complex for static analysis.

The RTSJ specification has defined another allocation mechanism for Java programs
based on scoped memory areas. The allocation and de-allocation time of objects inside
RTS] Scoped Memory areas can be deterministic. In spite of this the analysis needed to
prove that the usage of scopes and the reference assignment to a given scoped object
will not raise any runtime exception can be very difficult.

Concerning the allocation of scoped memory areas, the RTSJ] specification just says that
the area will not be allocated from the current memory area, leaving the programmer in
doubt about the success of this operation, especially in case of memory fragmentation.

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided,
and the maximum memory usage computation of a program is reduced to the
computation of the maximum stack usage which is a tractable problem.

PERC Pico introduces a series of annotations that allow the programmer to specify in
which context an object will be used. Instead of requiring the programmer to allocate
every scope and to handle the scope change using the RTS] API, PERC Pico
automatically creates a local scope for every method and uses the programmer's
annotations to determine where to safely allocate objects when a “new” operation is
performed. The annotations do not prevent the code to run with any other Java VM.

During the DIANA project, PERC Pico was ported to VxWorks 653, PikeOS and SIMA. The
porting activity revealed that the behaviour of the implementations are very similar —
thanks to the compliance to the ARINC 653 standard — but nevertheless show some
significant differences. Indeed, every standard leaves decisions to the implementation;
this guarantees that (existing) systems with different design approaches may fruitfully
compete implementing the standard. Concerning the selected platforms, there are
differences in initialisation, configuration and the application of error recovery
mechanisms. For the applications running on top of PERC Pico, there should be no
visible difference in the behaviour - it is the main objective of Java in AIDA to hide
those differences.

The ECS application, namely the Zone Controller and the Pack Controller, was ported to
Java, using the PERC Pico memory annotations. The resulting code was compiled with
the tool chains for SIMA and VxWorks and run on both systems without any code
changes on application level. The behavior produced by the components on different
platforms was the same and components hosted on different modules interoperated
without any problem.

Since SIMA had already been tested against the Conformity Test specified in part 3 of
ARINC 653 GMV and the DIANA project team were confident that the behaviour of the
simulator would be very close to the behaviour of any ARINC 653 compliant RTOS.
However, the porting of a Safety Critical Java VM was an excellent demonstration of the
strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same time
that the compliance was not paid with decreased flexibility. In the contrary, the
simulator did not form any obstacles to the porting of the VM and its integration with the
demonstrator applications.
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4.5 AIDA LOGBOOKS

AIDA Logbooks are platform-wide service components that can be plugged into a system
by means of configuration files (Service Definition Descriptors). From these descriptors,
OS specific configuration files and glue code is generated and introduced into the target
tool chain.

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

¢ CREATE_LOGBOOK

¢ WRITE_LOGBOOK

¢ READ_LOGBOOK

¢ GET_LOGBOOK_STATUS

The difference between AIDA Logbooks and ARINC 653 Logbooks is location and scope:
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on
which this partition is hosted will also result in a failure of the logbook. If a backup
instance of the application needs to continue to write the logbook, it must be ensured by
the function developer that the logbook instances of the two application instances are
written in parallel.

AIDA Logbooks are location transparent and may contain one or more instances. A
service like WRITE_LOGBOOK Wwill result in writing a message in all instances at the same
time without the necessity for any further application activity.

The DIANA implementation of AIDA Logbooks uses ARINC 653 Logbooks and
communication via ARINC 653 queuing ports to request write and read access to AIDA
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When
a user application invokes a service like WRITE_LOGBOOK a message is sent to all
instances requesting to engrave the logbook entry folded into the message into the non-
volatile memory. The logbook instances then perform a write operation on their ARINC
653 Logbook.

The client side communication is implemented in a middleware layer that provides the
logbook services to the application in the same partition. Internally, these services are
mere communication stubs that exchange messages with the logbook instances. AIDA
applications may be coded in Java; AIDA Logbooks provide, hence, a Java language
binding for this communication stubs.

Figure 13 shows an AIDA logbook system with three redundant instances and one user
application using this logbook. The red lines around the components show partition and,
for redundancy reasons, hardware boundaries. It is technically possible, of course, to
host more than one replica of a logbook or one of the replicas and the user application
together on the same computer; for redundancy reasons, this is not useful.
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Figure 13: AIDA Logbooks

Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore
implemented directly on top of SIMA. This limited the available modules available to
host logbook servers to Linux/SIMA nodes. However, clients could still be hosted on any
ARINC 653 compliant system.

ARINC 653 defines logbooks with a two-phase writing algorithm. When an application
requests writing a message this message is first stored in a buffer in volatile memory. It
is later written to the non-volatile storage medium. This way, the time necessary for
engraving the message is not directly imposed on the calling process; instead, the
implementation has to define a policy for the scheduling of writing messages.

SIMA uses a system partition to implement such a policy. The time, necessary for
engraving the message to non-volatile memory is taken from scheduling windows of this
partition. Moreover, the fact that the engraver is part of a separated partition eases the
encapsulation of system-specific code.

The message buffer that temporarily holds the messages before they are engraved is
implemented by a shared memory segment between the system partition and the
application partition. The following figure illustrates the design:

application partition generated
logbook
system partition

Togoagk | JL | loghosk
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e | memory [ e

Figure 14: SIMA Logbook
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In the ECS demonstrator a logbook for the pack controller, PACK_LOGBOOK, was
implemented. The instances of the logbook were distributed on the two SIMA targets in
the system. Note that the logbook instances can only run on SIMA, since VxWorks does
not provide ARINC 653 Logbooks. However the logbook client can be used in both
systems; it is, hence, possible to use the service even from a VxWorks system. To
achieve this, it was not necessary to change any code between VxWorks and SIMA to
provide the functionality to both systems.

The use of a simulator turned out to be extremely useful. As a research project, DIANA
aimed at implementing new and experimental features that are, partly by nature, not
available in COTS that respond to strict safety demands. As a simulator, SIMA is not
expected to fulfil real on-board safety requirements. It is, hence, much easier and less
expensive to implement advanced features like the ARINC 653 extended services or
entirely new services proposed by research activities.

4.6 MULTI-STATIC RECONFIGURATION

AIDA extends IMA by supporting a first and limited, yet extensible, level of
reconfiguration. To avoid a growth of software complexity beyond acceptable limits (in
particular, in terms of certification effort), reconfiguration capabilities are actually
restricted: At start-up, an AIDA compliant system selects autonomously the
configuration that matches the system’s health state among a pre-defined and pre-
qualified set of configurations. This approach is called multi-static reconfiguration.

The first step of the algorithm, that takes place during the definition phase, determines
the current health state of the system. In order to do so, all modules in the same
reconfiguration domain exchange their private health state, represented by the result of
the power-up built-in test (PBIT). To ensure, all modules will finally agree on the same
system health state, a Byzantine Agreement Protocol is used [AD.4].

The second step of the algorithm is to apply a configuration that corresponds to the
system health state. This is achieved by a predefined mapping of health states to
possible configuration. If there is a configuration that maps the system health state and
this configuration is not the currently selected one, the system sets this new
configuration. Setting a configuration is basically done, by changing the entry point to
the configuration. The entry point is a file that defines which binaries and configuration
data should be loaded at boot time. When the configuration has been set the system is
rebooted and the two steps of the algorithms are repeated. If there was no new failure
in the system, the algorithm shall deduct the same configuration as in the first run and,
hence, the current configuration.

If the configuration that results from the algorithm is identical to the current
configuration the system leaves the definition phase and proceeds to the operation
phase. If there is no configuration that maps the current system health state the module
is passivated.

The heterogeneity of the systems had to be taken into account in the design, coding and
parameterisation of the multi-static reconfiguration. First, an overall timeout must be
found for all modules. To achieve this, the algorithm was benchmarked on the different
target systems. One of the problems was the start-up procedure. No synchronised start-
up had been defined for the demonstrators and, even worse, different start-up scenarios
- for demonstration to an audience and for benchmarking in the lab - had been
identified. Therefore, different tolerance delays, between two seconds and two minutes,
and overall timeouts, between twenty seconds and three minutes, were chosen for
different demonstration purposes.

© GMV, 2010; all rights reserved SIMA in DIANA



SIMA in DIANA
Draft 0.7
INNOVATING SOLUTIONS Page 27 Of 32

Another issue that must be solved is the module reset and passivation mechanism. For
RESET, the ARINC 653 health monitor was used on VxWorks and VxSim: An application
error is raised by the reconfiguration engine that is not handled within the partition and,
hence, propagated to the partition health monitor where RESET was defined as the
corresponding error response action.

On SIMA, a system-specific shutdown service is available that is defined as follows:
procedure apx_shutdown
(MODE : in SHUTDOWN_MODE_TYPE;
RETURN_CODE : out RETURN_CODE_TYPE) is
error

when (current partition is not allowed to issue this

command) =>
RETURN_CODE := INVALID_CONFIG;

when (MODE does not identify a valid shutdown mode) =>
RETURN_CODE := INVALID_PARAMETER;

normal

if (MODE is APX_SHUTDOWN_HALT) then
stop module;

else if (MODE is APX_SHUTDOWN_RESET) then
reboot module;

end if;

RETURN_CODE := NO_ERROR;

end apx_shutdown;

In spite of being a SIMA-specific interface, the service is defined in the style of ARINC
653 services. It takes two arguments: the MODE and the RETURN_CODE. As in almost
all ARINC 653 services, the RETURN_CODE is used to pass error information back to the
caller. Possible errors are INVALID CONFIG, INVALID PARAMETER and NO_ERROR. The
MODE parameter determines which of two possible actions shall be applied: HALT or
RESET. On SIMA, the apx_shutdown service with RESET mode was used to implement
the reset action.

Concerning passivation, the shutdown service was, again, the natural choice on SIMA.
On VxWorks 653, however, where no such functionality is available, the Multiple Module
Schedules service was exploited instead. Instead of shutting down the system, the
reconfiguration engine requests to switch to an empty module schedule. The module
continues to work, but no application is ever scheduled.

The system-specific code was encapsulated in a system partition that answers service
requests by the reconfiguration engine. There is one generic system partition per
module, implementing also other system-specific services that may be requested by
applications, e.g. ARINC 653 logbooks. This way, the overhead, introduced by the
reconfiguration approach, was kept to a minimum.

The reconfiguration engine is hosted on one partition per module. This partition is
connected to the reconfiguration engines on other modules by queuing ports that
implement the channels of the Byzantine Agreement protocol. This is depicted below:
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Again, the Multiple Module Schedules service was used to keep the overhead as small as
possible: After a successful completion of the algorithm, i.e., when at the end of the
algorithm the new configuration is equal to the current configuration, a switch to a
schedule is requested that does not contain the execution windows for the
reconfiguration engine anymore. In consequence, the reconfiguration engine will not

consume any time resources after the system has entered operational phase.

For the ECS demonstrator, three configuration scenarios were defined:

e Configuration CO is the basic configuration with all hardware nodes available;

e Configuration C1 is a degraded configuration with the VxWorks node failing;

e Configuration C2 is the degraded configuration with one of the SIMA nodes

failing.

Figure 16 illustrates this approach:
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Figure 16: Reconfiguration Scenario for ECS Demonstrator

In Figure 16, modules depicted in blue are Intel desktop PCs running Linux with the
SIMA environment. Modules depicted in red are PPC-based computers running VxWorks.

In configuration CO, ModuleO serves as spare for the pack controller hosted on Modulel.
Additionally, it hosts two logbook instances of the pPack_LoGBOOK.® A third instance of
the logbook is hosted together with the primary pack controller on Modulel. Module2,
the PPC system, hosts the zone controller.

All modules have a system partition and a partition for the reconfiguration engine
(MultiStat). The system partitions implement all system specific code, needed for the
reconfiguration engine. The system partitions on Module0 and Modulel additionally drive
the logbook instances.

In configuration C1, Module2 has failed. The zone controller is now hosted on ModuleO.
In configuration C2, Modulel has failed. The plant controller is now running on ModuleO.

8 Note that hosting two instances of the same logbook on the same hardware node is of course not useful in terms
of redundancy. This architecture was chosen, because there were only two computers in the demonstrator,
running SIMA.
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Note that a possible third configuration with ModuleO failing is not interesting, since
none of the components on Module0 can be hosted on one of the other modules in a
meaningful way.

The ECS Plant is a single-partition SIMA application that runs on the Concurrent system.
It acts as a communication bridge between the EuroSim environment simulation [AD.9]
and the ECS application. Since it is not an AIDA component, it was not integrated in the
reconfiguration approach. Instead, the communication lines to zone and pack controller
were duplicated and the correct line was selected, depending on the current physical
location of these components.

All modules, the PPC module with VxWorks as well as the SIMA system on Linux,
performed the reconfiguration algorithm without any problem. In a homogeneous
environment (i.e. SIMA only), the whole reconfiguration algorithm ran within less than
two seconds (worst case). In a heterogeneous system, the synchronisation issues
described above had to be taken into account. This resulted in a longer definition
phases, up to a minute for the lab benchmarks.

© GMV, 2010; all rights reserved SIMA in DIANA



SIMA in DIANA
Draft 0.7
INNOVATING SOLUTIONS Page 31 Of 32

5 THE DEMONSTRATOR AT AVIONICS 2010

To complete the demonstrator, the displays were integrated into NLR’s APERO flight
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a
fixed base research flight simulator built to provide a flexible avionics prototyping and
cockpit simulation system.

This completely integrated demonstrator was presented at the exhibition of the Avionics
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airbus
A320 cockpit. The ECS control panels were integrated into the cockpit. People using the
flight simulator could change the cabin temperature and control the effect by means of
the EuroSim [AD.9] output displayed on a screen next to the flight simulator (on the left
hand side of Figure 17):

ECS target systems
results displayed by
EuroSim

APERO flight
simulator

Integrated ECS
control panels

Figure 17: ECS Demonstrator at Avionics 2010°

On the table on the left hand side of Figure 17, the on-board computer, running
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture.
However, the simout output is displayed on the screen to give a visual impression of the
partitioning concept.

The demonstrator ran for several hours per day with this set-up. No failures related to
the operating systems, simulators or AIDA components occurred. The DIANA project
team had sufficient confidence in the system to demonstrate it with this heterogeneous
environment. This confidence was mainly inspired by the quality of COTS components
that were used to built the demonstrator.

° © NLR, 2010, all rights reserved
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6 CONCLUSIONS

In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran
real-world avionics applications for several hours and days without interruption, without
errors or memory leaks and even without deadline misses. The use in the DIANA project
shows impressively that the tool is stable and robust, both in the functional domain and
in timeliness.

SIMA also turned out to be an excellent tool for prototyping applications. The SIMA tool
chain is extremely easy to use compared to real-target systems. Application code was
developed, integrated and tested within hours. This advantage was exploited during the
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the
initial C-code of ECS application components.

The low effort and, hence, low cost of the development for the SIMA environment,
enabled the project team to prototype and compare different designs. This way, the
project achieved remarkable high quality of software components, in particular the APEX
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and,
of course, the ECS application.

Engineers, not familiar with the ARINC 653 APEX, benefited from SIMA’s easy-to-use,
yet realistic tool chain. Also, the good quality of documentation and sample code eases
studying the behaviour of the ARINC 653 services in detail.

An important factor in the project was SIMA’s proven compliance to ARINC 653. Like
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The
project could, hence, rely on the fact that the real-target RTOS, VxWorks 653, and the
SIMA simulator on Linux would produce the same functional behaviour.

The porting of a complex environment such as a complete Safety Critical Java VM to the
ARINC 653 APEX, using SIMA and real-target RTOS, was an excellent demonstration of
the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same
time that the compliance was not paid with lack of flexibility. In the contrary, the
simulator did not form any obstacles to the porting of the VM and its integration with the
demonstrator applications.

As a research project, DIANA aimed at implementing new and experimental features
that are not available in real-target systems. Certifiable RTOS have to fulfil extremely
demanding safety requirements. This makes the development of new, experimental and
potentially complex features difficult and costly. As a simulator, SIMA is not expected to
respond to real safety challenges. It is, hence, much easier and less expensive to
implement advanced features like the ARINC 653 extended services or to integrate
entirely new concepts proposed by research activities. A simulator like SIMA is, hence, a
valuable means in particular for aeronautical research programmes.
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