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11  IINNTTRROODDUUCCTTIIOONN

11..11  PPUURRPPOOSSEE  

DIANA was a research and technology development project funded through the 
European Commission in 
at the implementation of a new avionics platform based on the concepts of Integrated 
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture 
for Independent Distribut
software development. These novelties consist in both: new tool concepts and new run
time technologies. In terms of tools, AIDA proposes

• To base development of critical on
for early validation and verification of architectures as well as 
generation of code and configuration

• To use formal methods for early validation and verification of algorithms.

In terms of new run-time techno

• A new concept of software components that provide

o Basic services and
components);

o Partition

Those service components are describ
defined interfaces; as such they can be 
plugged into a system at different physical locations without affecting application 
code. 

The components extend the ARINC 653 speci
at the same time, they use ARINC 653 basic services (defined in part 1 and part 
2 of the specification

• A new communication paradigm based on the Publish and Subscribe 
architecture; in the scope of DIANA, a Publish and Subscribe library was 
implemented on 
Management Group’s (OMG) Data Distribution Services (DDS).

• New Reconfiguration approaches, based on the DDS l
reconfiguration and, for pre
concept, called Multi
availability of aircrafts without increasing the amount of hardware.

• The use of obje
executing applications. The project implemented a Java virtual machine, based 
on Atego’s PERC Pico Safety Critical Java VM.
ARINC 653.  

In the scope of the DIANA p
and their implementation. Both demonstrators use safety
that had been developed with real on
was based on a Flight Wa
based on an Environmental Control System (ECS), developed by 
Aerospace Laboratory (
consisting of real target Power PC (PPC) boa
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NN  

DIANA was a research and technology development project funded through the 
European Commission in the scope of the Sixth Framework Programme (FP6). It aimed 
at the implementation of a new avionics platform based on the concepts of Integrated 
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture 
for Independent Distributed Avionics) proposes a series of novelties that ease on
software development. These novelties consist in both: new tool concepts and new run
time technologies. In terms of tools, AIDA proposes 

To base development of critical on-board functions on model-based engineering 
for early validation and verification of architectures as well as 
generation of code and configuration artefacts; 

To use formal methods for early validation and verification of algorithms.

time technologies, AIDA proposes 

A new concept of software components that provides  

asic services and composed services (consisting of a collection of 
components); 

Partition- and module-local services and platform-wide services;

Those service components are described by configuration files and provide well
defined interfaces; as such they can be offered by different suppliers and can be 
plugged into a system at different physical locations without affecting application 

The components extend the ARINC 653 specification to the platform level and, 
at the same time, they use ARINC 653 basic services (defined in part 1 and part 

specification) to implement the advanced features they provide.

A new communication paradigm based on the Publish and Subscribe 
hitecture; in the scope of DIANA, a Publish and Subscribe library was 

implemented on top of ARINC 653 that follows the specification of the Object 
Management Group’s (OMG) Data Distribution Services (DDS). 

New Reconfiguration approaches, based on the DDS library for in
reconfiguration and, for pre-flight reconfiguration, based on an innovative 
concept, called Multi-Static Reconfiguration (MSR) that is able to improve 
availability of aircrafts without increasing the amount of hardware.

The use of object-oriented programming languages and virtual machines (VM) 
executing applications. The project implemented a Java virtual machine, based 
on Atego’s PERC Pico Safety Critical Java VM. This VM was completely ported to 

In the scope of the DIANA project two demonstrators were built to validate the concepts 
and their implementation. Both demonstrators use safety-critical avionics applications 
that had been developed with real on-board requirements. One of these demonstrators 
was based on a Flight Warning System (FWS), developed by THALES, and the other was 
based on an Environmental Control System (ECS), developed by 
Aerospace Laboratory (NLR). Both demonstrators run on a heterogeneous system 
consisting of real target Power PC (PPC) boards and Intel-based desktops. On the PPC 
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DIANA was a research and technology development project funded through the 
the scope of the Sixth Framework Programme (FP6). It aimed 

at the implementation of a new avionics platform based on the concepts of Integrated 
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture 

ed Avionics) proposes a series of novelties that ease on-board 
software development. These novelties consist in both: new tool concepts and new run-

based engineering 
for early validation and verification of architectures as well as for automatic 

To use formal methods for early validation and verification of algorithms. 

composed services (consisting of a collection of 

wide services; 

ed by configuration files and provide well-
by different suppliers and can be 

plugged into a system at different physical locations without affecting application 

fication to the platform level and, 
at the same time, they use ARINC 653 basic services (defined in part 1 and part 

) to implement the advanced features they provide. 

A new communication paradigm based on the Publish and Subscribe 
hitecture; in the scope of DIANA, a Publish and Subscribe library was 

of ARINC 653 that follows the specification of the Object 
 

ibrary for in-flight 
flight reconfiguration, based on an innovative 

Static Reconfiguration (MSR) that is able to improve 
availability of aircrafts without increasing the amount of hardware. 

oriented programming languages and virtual machines (VM) 
executing applications. The project implemented a Java virtual machine, based 

This VM was completely ported to 

two demonstrators were built to validate the concepts 
critical avionics applications 

board requirements. One of these demonstrators 
rning System (FWS), developed by THALES, and the other was 

based on an Environmental Control System (ECS), developed by Dutch National 
. Both demonstrators run on a heterogeneous system 

based desktops. On the PPC 
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boards, the demonstrators 
the desktops, the FWS used VxSim, a host
tool chain, and the ECS used SIMA, GMV’s ARINC 653

This document describes the use of SIMA in the ECS demonstrator. In 
short overview on the SIMA execution environment
based on contributions by NLR
integration of the application with the AIDA components is described
extended set-up of the demonstrator at the exhibition of the Avionics Event in 
Amsterdam 2010 is shown.

11..22  AACCRROONNYYMMSS  

ADIRU Air Data Inertial Reference Unit

AIDA Architecture for Independent Distribu

API Application Programming Interface

APEX Application Executive

ARD Application Requirements Descriptor

ARINC Avionics Radio Inc.

BITE Built

CDS Cockpit Display System

COTS Commercial Off

CPIOM Core Process

CPM Core Processing Module

CPU Central Processing Unit

DAL Development Assurance Level

DDS Data Distribution Services

DIANA Distributed Equipment Independent environment for Advanced avionics 
Applications

EC European Commissio

ECS Environmental Control System

ESA European Space Agency

EU European Union

FAA Federal Aviation Administration

FIFO First

FWS Flight Warming System

GCC GNU Compiler Collection

GPL General Public License

HMI Human Machine Interface

HW Hardware

; all rights reserved 

demonstrators used Windriver’s VxWorks 653 Safety Critical Platform; on 
the desktops, the FWS used VxSim, a host-based simulator part of the 

, and the ECS used SIMA, GMV’s ARINC 653 simulator. 

This document describes the use of SIMA in the ECS demonstrator. In 
short overview on the SIMA execution environment is given. In section 
based on contributions by NLR, the ECS Application is presented. In 
integration of the application with the AIDA components is described. In

up of the demonstrator at the exhibition of the Avionics Event in 
Amsterdam 2010 is shown. Section 6, finally, presents some conclusions.

Air Data Inertial Reference Unit 

Architecture for Independent Distributed Avionics 

Application Programming Interface 

Application Executive 

Application Requirements Descriptor 

Avionics Radio Inc. 

Built-In Test Equipment 

Cockpit Display System 

Commercial Off-The-Shelf 

Core Processing Input/Output Module 

Core Processing Module 

Central Processing Unit 

Development Assurance Level 

Data Distribution Services 

Distributed Equipment Independent environment for Advanced avionics 
Applications 

European Commission 

Environmental Control System 

European Space Agency 

European Union 

Federal Aviation Administration 

First-In/First-Out 

Flight Warming System 

GNU Compiler Collection 

General Public License 

Human Machine Interface 

Hardware 
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used Windriver’s VxWorks 653 Safety Critical Platform; on 
part of the VxWorks 653 

This document describes the use of SIMA in the ECS demonstrator. In section 2, a 
section 3, which is 
. In section 4, the 
. In section 5, the 

up of the demonstrator at the exhibition of the Avionics Event in 
, finally, presents some conclusions. 

Distributed Equipment Independent environment for Advanced avionics 
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IMA Integrated Modular Avionics

IDE  Integrated Development Environment

LIFO Last

MDA Model

MDB Model Based Development

MOS Module Operating System

MSR Multi

NPTL Native POSIX Th

OMG Object Management Group

OS Operating Systems

PC Personal Computer

PBIT Power

PDD Platform Definition Descriptor

PIM Platform Independent Model

POS Partition Operating System

PowerPC Performance Optimisation With En
Computing

PPC PowerPC

PSM Platform

POSIX Portable Operating System Interface

RTOS Real Time Operating System

RTSJ Real

SCJT Safety

SIMA Simulated Integrated 

SDD Service Definition Descriptor

SW Software

VM Virtual Machine

; all rights reserved 

  

Integrated Modular Avionics 

Integrated Development Environment 

Last-In/First-Out 

Model-Driven Architecture 

Model Based Development 

Module Operating System 

Multi-Static Reconfiguration 

Native POSIX Thread Library 

Object Management Group 

Operating Systems 

Personal Computer 

Power-up Built-In Test 

Platform Definition Descriptor 

Platform Independent Model 

Partition Operating System 

Performance Optimisation With Enhanced RISC Perfo
Computing 
PowerPC 

Platform-Specific Model 

Portable Operating System Interface 

Real Time Operating System 

Real-Time Specification for Java 

Safety-Critical Java Technology 

Simulated Integrated Modular Avionics 

Service Definition Descriptor 

Software 

Virtual Machine 
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Name. 

APERO Avionics Prototyping Environment for Research and 
Operations 

AVT ARINC 653 Validation Test Suite; implementation of the 
ARINC 653 Part 3 – Conformity Test Specification

EuroSim Real-Time Simulator with person or hardware in the loop

GNU Gnu is Not Unix. Free Operating System Software.

PERC Pico Safety Critical Java Virtual Machine.

PikeOS ARINC 653 compliant RTOS

SIMA ARINC 653 RTOS simulator for Linux

Simulink Environment for multi
design form dynamic and embedded systems

Vincent Prototyping tool for glass cockpit displays

VxWorks 653 ARINC 653 compliant 
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Title 

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARIN
– Required Services). ARINC Inc., 2006. 

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARINC 
– Extended Services). ARINC Inc., 2008. 

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARINC 
– Conformity Test Specification). ARINC Inc., 2006. 

Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho, Tobias Schoofs: Enhanced Dispatchability of Aircrafts 
Static Configuraltion, ERTS2, 2010. 

Tobias Schoofs, Eric Jenn, Stéphan Leriche, Kelvin Nilson, Ludovic Gauthier, Marc Richard-Foy: Use of PERC Pico in 
the AIDA Avionics Platform, JTRES, September, 2009. 

GMV: SIMA Overview, January, 2010. 

Command Line Tools – Application Development and Configuration Guide, January 2010.

GMV: The AIDA System, DIANA White Paper, January 2008. 

time Simulation to the Limit, http://www.nlr.nl/?id=12264&l=en 

  

Description Vendor

Avionics Prototyping Environment for Research and NLR 

ARINC 653 Validation Test Suite; implementation of the 
Conformity Test Specification 

GMV 

Time Simulator with person or hardware in the loop NLR, DutchSpace, TASK24

Gnu is Not Unix. Free Operating System Software. Free Software Foundation (FSF)

Virtual Machine. Atego 

ARINC 653 compliant RTOS SYSGO 

ARINC 653 RTOS simulator for Linux GMV 

for multi-domain simulation and model-based 
design form dynamic and embedded systems 

MathWorks 

ass cockpit displays NLR 

ARINC 653 compliant and DO-178B-certifiable RTOS Wind River 
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Software Standard Interface (ARINC 

Software Standard Interface (ARINC 

Software Standard Interface (ARINC 

Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho, Tobias Schoofs: Enhanced Dispatchability of Aircrafts 

Foy: Use of PERC Pico in 

, January 2010. 

Vendor 

TASK24 

Free Software Foundation (FSF) 
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22  SSIIMMAA  OOVVEERRVVIIEEWW

Simulated Integrated Modular Avionics (
the ARINC 653 Application Programming Interface (
operating systems that do not support 
to run on all POSIX-compliant 
Thread Library (NPTL), available on 
and for RTEMS, version 4.6 or higher

The ARINC 653 standard
Time Operating System (
partitioning resources over time and memory. 
as an important foundation for the development of safety
industry. 

ARINC 653 defines support for robust partitioning in on
processing unit, usually called a module, is able to host one or more avionics 
applications and to execute 
underlying system, often called the Module Operating System
separation of the avionics applications

• Each partitioned function has guaranteed access to the processor. The 
guarantees shall reflect the frequency as well as the execution time of the 
specific application; 

• A failure in one p
function. 

In consequence, the partitioning approach 
the same time, eases verification, validation and certification.

The unit of partitioning is ca
a program in a single application environment: it comprises data, code and its own 
context configuration attributes (see 

Partitioning separates applications in two dimensions: space and time. Spatial 
separation means that the memory of a partition is protected. No application can access 
memory out of the scope of its own partition. Temporal s
application at a time has access to system resources, including the processor; therefore 
only one application is executing at one point in time 
system resources between partitioned applications.

ARINC 653 defines a static configuration where each partition is assigned a set of 
execution windows. The program in the partition associated with the current execution 

; all rights reserved 

WW  

Simulated Integrated Modular Avionics (SIMA) is an execution environment,
653 Application Programming Interface (API) and robust partitioning 

systems that do not support these features by themselves. 
compliant OSes; it is tested and optimised for the Native 
), available on OSes like GNU/Linux, kernel version 2.6 or

RTEMS, version 4.6 or higher.  

The ARINC 653 standard ([AD.1], [AD.2]) specifies a programming interface for a 
Time Operating System (RTOS), and, in addition, establishes a particular
partitioning resources over time and memory. Today, this standard has been established 

foundation for the development of safety-critical systems

ARINC 653 defines support for robust partitioning in on-board systems, such that one 
processing unit, usually called a module, is able to host one or more avionics 
applications and to execute these applications independently. This can be achieved if the 
underlying system, often called the Module Operating System 
separation of the avionics applications, such that  

Each partitioned function has guaranteed access to the processor. The 
guarantees shall reflect the frequency as well as the execution time of the 
specific application;  

failure in one partitioned function cannot cause a failure in another partitioned 

the partitioning approach allows reducing on-board hardware and, at 
eases verification, validation and certification.  

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to 
a program in a single application environment: it comprises data, code and its own 
context configuration attributes (see Figure 1). 

Figure 1: Partitioning 

Partitioning separates applications in two dimensions: space and time. Spatial 
separation means that the memory of a partition is protected. No application can access 
memory out of the scope of its own partition. Temporal separation means that only one 
application at a time has access to system resources, including the processor; therefore 
only one application is executing at one point in time – there is no competition for 
system resources between partitioned applications. 

RINC 653 defines a static configuration where each partition is assigned a set of 
execution windows. The program in the partition associated with the current execution 
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) is an execution environment, providing 
and robust partitioning to 

by themselves. SIMA is designed 
; it is tested and optimised for the Native POSIX 

rnel version 2.6 or higher, 

interface for a Real-
, and, in addition, establishes a particular method for 

this standard has been established 
critical systems in the avionics 

oard systems, such that one 
processing unit, usually called a module, is able to host one or more avionics 

independently. This can be achieved if the 
 (MOS), provides 

Each partitioned function has guaranteed access to the processor. The 
guarantees shall reflect the frequency as well as the execution time of the 

n another partitioned 

board hardware and, at 

lled a partition. In a given sense, a partition is equivalent to 
a program in a single application environment: it comprises data, code and its own 

 

Partitioning separates applications in two dimensions: space and time. Spatial 
separation means that the memory of a partition is protected. No application can access 

eparation means that only one 
application at a time has access to system resources, including the processor; therefore 

there is no competition for 

RINC 653 defines a static configuration where each partition is assigned a set of 
execution windows. The program in the partition associated with the current execution 
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window gains access to the processor. When the execution window terminates, the 
program is preempted; when the next execution window starts, the program continues 
execution from the point it was previously preempted

Processes within the scope of a partition are scheduled by a priority
scheduler with first-in-first

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
processes within the same partition share the same address space. There is no memory 
separation between processes. However, sin
different partitions cannot access each other’s 
processes in different partitions is achieved by ports and channels. Ports are 
communication end points either for reading or writing th
that is unique in the scope of the partition. Channels connect these ports transparent
to application code.  

In SIMA, ARINC 653 
processes are mapped 
single POSIX program, containing user code and data, the 
finally, the platform execution environment, i.e. the 

The Module Operating System (MOS), controlling the diff
belonging to the same simulated module,
following picture illustrates this design:

The APEX services are implemented by a static library, cal
the APEX process scheduler on top of the POSIX FIFO scheduler (
features are encapsulated within a core layer; this way main parts of the APEX code do 
not rely directly on POSIX, but on scheduling policies impl
The advantage of this approach is enhanced portability 
implementation of the SIMA POS, running on bare hardware 
scheduler features that introduce subtle differences between different POSIX 
implementations are handled in the core layer and hidden from the APEX 
implementation. 

The MOS implements the APEX partition scheduler. To be able to 
partitions, commands are exchanged with the POS layer in the partitions using signals 
and shared memory segments. Obviously, this approach does not answer safety and 
security threats, caused by random errors in the partitioned code. The POS has to 
respond correctly to the given commands which 
faulty or malicious application code has corrupted
was designed and developed, following safety critical software guidelines; its purpose is 

; all rights reserved 

window gains access to the processor. When the execution window terminates, the 
is preempted; when the next execution window starts, the program continues 

execution from the point it was previously preempted. 

Processes within the scope of a partition are scheduled by a priority-based preemptive 
first-out (FIFO) order for processes with the same priority. 

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
in the same partition share the same address space. There is no memory 

separation between processes. However, since partitions are separated, processes in 
different partitions cannot access each other’s memory. Communication between 
processes in different partitions is achieved by ports and channels. Ports are 
communication end points either for reading or writing that are identified by 
that is unique in the scope of the partition. Channels connect these ports transparent

ARINC 653 partitions are mapped to POSIX processes and 
to POSIX threads. Each SIMA application is, hence, linked to 

program, containing user code and data, the APEX code and data and, 
the platform execution environment, i.e. the NPTL for Linux.  

Module Operating System (MOS), controlling the different PO
belonging to the same simulated module, is likewise linked to one POSIX process. 
following picture illustrates this design: 

Figure 2: SIMA Architecture 

The APEX services are implemented by a static library, called POS. The POS implements 
the APEX process scheduler on top of the POSIX FIFO scheduler (sched_fifo
features are encapsulated within a core layer; this way main parts of the APEX code do 
not rely directly on POSIX, but on scheduling policies implemented by the POS itself. 
The advantage of this approach is enhanced portability - there is even an 
implementation of the SIMA POS, running on bare hardware - and the fact that 
scheduler features that introduce subtle differences between different POSIX 
mplementations are handled in the core layer and hidden from the APEX 

The MOS implements the APEX partition scheduler. To be able to suspend 
partitions, commands are exchanged with the POS layer in the partitions using signals 

d shared memory segments. Obviously, this approach does not answer safety and 
security threats, caused by random errors in the partitioned code. The POS has to 
respond correctly to the given commands which it may fail to do in the case where 

cious application code has corrupted the state of the POS. In fact, the POS 
was designed and developed, following safety critical software guidelines; its purpose is 
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window gains access to the processor. When the execution window terminates, the 
is preempted; when the next execution window starts, the program continues 

based preemptive 
order for processes with the same priority.  

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653, 
in the same partition share the same address space. There is no memory 

ce partitions are separated, processes in 
Communication between 

processes in different partitions is achieved by ports and channels. Ports are 
at are identified by a name 

that is unique in the scope of the partition. Channels connect these ports transparently 

partitions are mapped to POSIX processes and ARINC 653 
application is, hence, linked to a 

code and data and, 

POSIX processes, 
is likewise linked to one POSIX process. The 

 

led POS. The POS implements 
sched_fifo). POSIX 

features are encapsulated within a core layer; this way main parts of the APEX code do 
emented by the POS itself. 

there is even an 
and the fact that 

scheduler features that introduce subtle differences between different POSIX 
mplementations are handled in the core layer and hidden from the APEX 

suspend and resume 
partitions, commands are exchanged with the POS layer in the partitions using signals 

d shared memory segments. Obviously, this approach does not answer safety and 
security threats, caused by random errors in the partitioned code. The POS has to 

in the case where 
the state of the POS. In fact, the POS 

was designed and developed, following safety critical software guidelines; its purpose is 
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to support embedded applications. The MOS, however, was not; the MOS does only 
simulate the behaviour of an ARINC 653 compliant OS on top of non
systems like standard Linux.

POS and MOS are designed to support real
programming interfaces of the POSIX thread library, like FIFO scheduling and
priorities. Additionally, all memory used during execution is created during initialisation 
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages 
in and out. However, hard real
preemptive operating system kernel. 
by Ingo Mólnar and Thomas Gleixner
deadlines. 

ARINC 653 queuing and sampling ports are mapped to UDP ports. This w
be flexibly linked to other ports on the same virtual module or to external resource
represented by a pseudo partition. 
devices and protocols, can be defined by means of user callbacks.

For visual control over the execution of ARINC 653 applications on SIMA, the 
is provided. The simout 
a graphical environment based on the 
impression of a module with five partitions running in the 

The ARINC 653 services 

• All required services defined in Part 1 of the 

o Partition Management Services;

o Process Management Services;

o Time Management Services;

; all rights reserved 

to support embedded applications. The MOS, however, was not; the MOS does only 
e behaviour of an ARINC 653 compliant OS on top of non

systems like standard Linux. 

POS and MOS are designed to support real-time applications. They use the real
programming interfaces of the POSIX thread library, like FIFO scheduling and
priorities. Additionally, all memory used during execution is created during initialisation 
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages 
in and out. However, hard real-time guarantees cannot be met without a
preemptive operating system kernel. If hard real-time is wanted, the PREEMPT

o Mólnar and Thomas Gleixner can be used to achieve guarantees

ARINC 653 queuing and sampling ports are mapped to UDP ports. This w
be flexibly linked to other ports on the same virtual module or to external resource
represented by a pseudo partition. Alternative mappings, e.g. to TCP/IP or even to I/O 
devices and protocols, can be defined by means of user callbacks. 

visual control over the execution of ARINC 653 applications on SIMA, the 
imout program shows the output of the MOS and up to six partitions in 

a graphical environment based on the ncurses library. The following figure gives a
impression of a module with five partitions running in the simout environment:

Figure 3: Partition Visualisation 

The ARINC 653 services that are currently implemented by SIMA are: 

All required services defined in Part 1 of the specification: 

Partition Management Services; 

Process Management Services; 

Time Management Services; 
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to support embedded applications. The MOS, however, was not; the MOS does only 
e behaviour of an ARINC 653 compliant OS on top of non-safety aware 

time applications. They use the real-time 
programming interfaces of the POSIX thread library, like FIFO scheduling and thread 
priorities. Additionally, all memory used during execution is created during initialisation 
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages 

time guarantees cannot be met without a fully 
PREEMPT-RT patch 

used to achieve guarantees for very short 

ARINC 653 queuing and sampling ports are mapped to UDP ports. This way, ports can 
be flexibly linked to other ports on the same virtual module or to external resources 

Alternative mappings, e.g. to TCP/IP or even to I/O 

visual control over the execution of ARINC 653 applications on SIMA, the simout tool 
program shows the output of the MOS and up to six partitions in 

library. The following figure gives an 
environment: 
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o Health Monitoring Services;

o Intra-Partition Communication Services;

o Inter-Partition Communication Services;

• Some extended services defined in Part 2 of the

o Multiple Module Schedules;

o Logbook System.

More extended services of Part 2 are under development, in particular:

• File System; 

• Service Access Points;

• Naming Services;

• Sampling Port Extensions;

• Memory Blocks. 

For more information on the SIMA

; all rights reserved 

Health Monitoring Services; 

Partition Communication Services; 

Partition Communication Services; 

Some extended services defined in Part 2 of the specification: 

Multiple Module Schedules; 

Logbook System. 

More extended services of Part 2 are under development, in particular: 

Service Access Points; 

Naming Services; 

Sampling Port Extensions; 

 

For more information on the SIMA simulation environment, please refer to [AD.
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[AD.6] and [AD.7]  
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33  TTHHEE  EECCSS  AAPPPPLLIICC

In the scope of the DIANA project, a case study was defined that involves a real
scenario of an environmen
defined that was easy to understand, but sufficiently complex to serve as a 
representative use case for 
system representative of systems c
transport aircrafts. 

Note that an actual environment control system involves more subsystems than 
discussed in this document. For simplicity, the description of the system is limited to the 
subsystems relevant to the case study. 

The ECS involves the following avionics systems, see 

• Air conditioning panel

• Zone controller; 

• Pack controller; 

• System display. 

The air conditioning pack is regulated by the pack co
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones. 
In order to regulate the temperature of this airflow, the zone controller regulates the 
amount of hot air added to the flow of
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CCAATTIIOONN11  

In the scope of the DIANA project, a case study was defined that involves a real
scenario of an environmental control – or air conditioning – system. 
defined that was easy to understand, but sufficiently complex to serve as a 
representative use case for AIDA. The case study focuses on a generic air conditioning 
system representative of systems currently in use on regional and long

Note that an actual environment control system involves more subsystems than 
discussed in this document. For simplicity, the description of the system is limited to the 

ant to the case study.  

The ECS involves the following avionics systems, see Figure 4: 

ir conditioning panel; 

 

 

 

The air conditioning pack is regulated by the pack controller to supply the mixing unit 
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones. 
In order to regulate the temperature of this airflow, the zone controller regulates the 
amount of hot air added to the flow of cool air. 

displays temperature

Forw
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Zone

Aft Z
one

Zone controller
feeds the required 

aft zone pack outlet

temperature to the

pack controller

Air conditioning panel
temperature control

Pack controller
controls air 

conditioning pack
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Figure 4: Air conditioning system2 
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In the scope of the DIANA project, a case study was defined that involves a real-life 
system. A scenario was 

defined that was easy to understand, but sufficiently complex to serve as a 
. The case study focuses on a generic air conditioning 

urrently in use on regional and long-distance air 

Note that an actual environment control system involves more subsystems than 
discussed in this document. For simplicity, the description of the system is limited to the 

ntroller to supply the mixing unit 
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones. 
In order to regulate the temperature of this airflow, the zone controller regulates the 
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Air conditioning panel 

The desired temperature in the cabin zones and in the cockpit can be manually selected 
on the overhead panel by the pilot. The pi
in order to obtain the desired temperature. This is depicted in 

Zone controller 

The temperature selections on the air conditioning panel of cockpit, forward and aft 
cabin are read by the zone controller. The zone controller regulates zone temperatures 
to match temperature selections on the air conditioning panel for cockpit, forward and 
aft cabin. It is responsible for setting the pack discharge temperatures thereby 
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim 
air to the zone inlet ducts it keeps the temperature as requested.

Zone control is divided into sepa
control function has the following inputs:

• Temperature selection (from air conditioning panel)

• Zone temperature (measurement in each zone)

• Air duct temperature (measurem

• Aircraft altitude (from ADIRS)

Each function calculates the desired temperature of the mixer unit, the lowest 
temperature demand will determine the actual mixer unit temperature. In addition, each 
function calculates the desired amount of trim air 
obtain the required duct demand temperature. The outputs of each function therefore 
are: 

• Desired mixer unit temperature

• Trim air demand.

Pack controller 

The zone controller feeds the required pack outlet temperature

The pack controller then sets the water extractor outlet temperature in accordance with 
demands from the zone controller, by modulating the ram
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The desired temperature in the cabin zones and in the cockpit can be manually selected 
on the overhead panel by the pilot. The pilot may increase or decrease the temperature 
in order to obtain the desired temperature. This is depicted in Figure 5. 

Figure 5: Air conditioning panel
3
 

elections on the air conditioning panel of cockpit, forward and aft 
cabin are read by the zone controller. The zone controller regulates zone temperatures 
to match temperature selections on the air conditioning panel for cockpit, forward and 

is responsible for setting the pack discharge temperatures thereby 
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim 
air to the zone inlet ducts it keeps the temperature as requested. 

Zone control is divided into separate control functions for each zone of the aircraft. Each 
control function has the following inputs: 

emperature selection (from air conditioning panel); 

one temperature (measurement in each zone); 

ir duct temperature (measurement in each duct for each zone);

ircraft altitude (from ADIRS). 

Each function calculates the desired temperature of the mixer unit, the lowest 
temperature demand will determine the actual mixer unit temperature. In addition, each 
function calculates the desired amount of trim air to be added to the air duct in order to 
obtain the required duct demand temperature. The outputs of each function therefore 

esired mixer unit temperature; 

rim air demand. 

The zone controller feeds the required pack outlet temperature to the pack controllers.

The pack controller then sets the water extractor outlet temperature in accordance with 
demands from the zone controller, by modulating the ram-air doors and by
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The desired temperature in the cabin zones and in the cockpit can be manually selected 
lot may increase or decrease the temperature 

.  

 

elections on the air conditioning panel of cockpit, forward and aft 
cabin are read by the zone controller. The zone controller regulates zone temperatures 
to match temperature selections on the air conditioning panel for cockpit, forward and 

is responsible for setting the pack discharge temperatures thereby 
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim 

rate control functions for each zone of the aircraft. Each 

zone); 

Each function calculates the desired temperature of the mixer unit, the lowest 
temperature demand will determine the actual mixer unit temperature. In addition, each 

to be added to the air duct in order to 
obtain the required duct demand temperature. The outputs of each function therefore 

to the pack controllers. 

The pack controller then sets the water extractor outlet temperature in accordance with 
air doors and by-pass valve. 
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For safety reasons, the pack controller is redundant. Whe
fails (as detected by the pack controller Build
pack controller takes over (see 

 

Pack control is divided in flow control and temperature control functions. The flow 
control function takes the desired pack flow and regulates the pack flow valve. Its input 
is: 

• Pack flow demand (from air conditioning panel)

Its output is: 

• Pack flow valve setting

The pack temperature control function regulates the pack temperature 
the by-pass valve and ram air doors. Its inputs are:

• Pack outlet temperature (measurement)

• Pack temperature demand (from mixer control)

Its outputs are: 

� Ram air in demand

� Ram air out demand

� By-pass valve setting
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For safety reasons, the pack controller is redundant. When the primary pack controller 
fails (as detected by the pack controller Build-In Test Equipment (BITE)), the secondary 
pack controller takes over (see Figure 6).  

Figure 6: Redundant pack controllers
4
 

Pack control is divided in flow control and temperature control functions. The flow 
control function takes the desired pack flow and regulates the pack flow valve. Its input 

ack flow demand (from air conditioning panel). 

ack flow valve setting. 

The pack temperature control function regulates the pack temperature 
pass valve and ram air doors. Its inputs are: 

ack outlet temperature (measurement); 

ack temperature demand (from mixer control). 

am air in demand; 

am air out demand; 

pass valve setting. 
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n the primary pack controller 
In Test Equipment (BITE)), the secondary 

 

Pack control is divided in flow control and temperature control functions. The flow 
control function takes the desired pack flow and regulates the pack flow valve. Its input 

The pack temperature control function regulates the pack temperature by modulating 
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System Display 

On the system display, the cruise page
and informs the pilot about the actual temperature in the cockpit and cabins (
The cruise page provides the pilot some basic information from the air conditioning 
page. 
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On the system display, the cruise page monitors the cabin temperature
and informs the pilot about the actual temperature in the cockpit and cabins (
The cruise page provides the pilot some basic information from the air conditioning 

 

Figure 7: AIR section of Cruise page
5
 

         
© NLR, 2010, all rights reserved 

SIMA in DIANA 
Draft 0.7 

Page 15 of 32 

SIMA in DIANA 

monitors the cabin temperature and pressure 
and informs the pilot about the actual temperature in the cockpit and cabins (Figure 7). 
The cruise page provides the pilot some basic information from the air conditioning 
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44  TTHHEE  DDEEMMOONNSSTTRR

44..11  AAIIDDAA  CCOOMMPPOONNEENN

AIDA ([AD.8]) is an IMA
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at 
highest DO-178B/C DAL level and commercially available today. 
of ARINC 653 and the current state
of the IMA execution environment regarding the underlying hardware and operating 
system; it enhances the location transparency and it supports a developme
integration process based on model
following figure gives an overview on the AIDA architecture: 

The basic building block
651 and 653 standards. Partitions are fault and change containment units and as such 
relevant for incremental certification of applications and services as well as for 
application deployment and reuse. 

Three kinds of partitions, defined by their language binding, are supported: C, Ada and 
Java partitions. In general, it is forbidden to mix languages at application level within 
one partition. Concerning Java, this requirement is relaxed. 
the Java execution environment foresees an automated conversion to C code; 
moreover, Java applications interface 
components that are directly linked into the partition

; all rights reserved 

RRAATTOORR  IINNTTEEGGRRAATTIIOONN  

NNTTSS  

is an IMA-based platform, backward compatible with the ARINC 653 
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at 

178B/C DAL level and commercially available today. AIDA enh
of ARINC 653 and the current state-of-the-art in IMA, namely it improves the neutrality 
of the IMA execution environment regarding the underlying hardware and operating 
system; it enhances the location transparency and it supports a developme
integration process based on model-driven engineering and formal methods. The 
following figure gives an overview on the AIDA architecture:  

Figure 8: AIDA Architecture 

The basic building blocks in the AIDA platform are partitions as defined in the ARINC 
651 and 653 standards. Partitions are fault and change containment units and as such 
relevant for incremental certification of applications and services as well as for 
application deployment and reuse.  

ions, defined by their language binding, are supported: C, Ada and 
Java partitions. In general, it is forbidden to mix languages at application level within 
one partition. Concerning Java, this requirement is relaxed. The compilation model of 

ution environment foresees an automated conversion to C code; 
moreover, Java applications interface directly with the C code of those AIDA middleware 
components that are directly linked into the partition.  
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based platform, backward compatible with the ARINC 653 
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at 

enhances aspects 
art in IMA, namely it improves the neutrality 

of the IMA execution environment regarding the underlying hardware and operating 
system; it enhances the location transparency and it supports a development and 

driven engineering and formal methods. The 

 

titions as defined in the ARINC 
651 and 653 standards. Partitions are fault and change containment units and as such 
relevant for incremental certification of applications and services as well as for 

ions, defined by their language binding, are supported: C, Ada and 
Java partitions. In general, it is forbidden to mix languages at application level within 

he compilation model of 
ution environment foresees an automated conversion to C code; 

of those AIDA middleware 
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Applications rely on the ARINC 653 API. Additiona
defined by the AIDA middleware to invoke local or remote services and to exchange 
data, based on the publish/subscribe paradigm. 

The API level of the middleware is based on ARINC 653 and 
in the partitions. Note that RTOS
VxWorks 653, for instance, does not instantiate the partition operating system (POS) 
once per partition; instead the POS is linked to the parti
is depicted in Figure 8 by separating A653 services in an own partition.

Other components, namely, the AIDA 
for remote invocation and data distribution services, the reconfiguratio
Switcher, System Manager) and the System Health Monitor may be placed in separate 
partitions. In Figure 8, this is depicted by placing a layer of partitioned platform 
components below the applicati

The elements of the AIDA architecture, such as services, platform and applications, are 
controlled by configurations given in descriptors. A
requirements (memory, time resources, services) collected in the Applicat
Requirements Descriptor
captured in the Service Definition 
in terms of applications and services on one hand and available hardware resource
the other. This information is collected 
made available through dedicated services.

The descriptors are generated from a model
defines a platform independen
communication channels, 
This high-level architecture is then mapped onto the platform, 
partitions, communication buses
approaches that are based on automatic transformations, this mapping is done 
interactively using the PIM
system-wide architecture is broken down to modules and th
output of the process is a
hence, a new model, but also configuration items on module level for different operating 
system (currently, VxWorks and SIMA) describin
connection tables and the location of service components. The tool also generates glue 
code needed to link the components together.  

On porting the ECS application to the AIDA platform, a set of components 
integrated into the development tool chain and into the run
gives an overview on the components that were used during demonstrator integration:

; all rights reserved 

Applications rely on the ARINC 653 API. Additionally, they can and shall use services 
defined by the AIDA middleware to invoke local or remote services and to exchange 
data, based on the publish/subscribe paradigm.  

The API level of the middleware is based on ARINC 653 and – logically 
n the partitions. Note that RTOSes may implement this architecture differently; 
VxWorks 653, for instance, does not instantiate the partition operating system (POS) 
once per partition; instead the POS is linked to the partition’s virtual address space. Thi

by separating A653 services in an own partition.

Other components, namely, the AIDA platform services, the AIDA broker, responsible 
for remote invocation and data distribution services, the reconfiguratio
Switcher, System Manager) and the System Health Monitor may be placed in separate 

, this is depicted by placing a layer of partitioned platform 
components below the application layer. 

The elements of the AIDA architecture, such as services, platform and applications, are 
urations given in descriptors. Applications are defined by their 

requirements (memory, time resources, services) collected in the Applicat
Descriptor (ARD). Services are defined by the resources they provide, 

captured in the Service Definition Descriptor (SDD). The platform as a whole is defined 
in terms of applications and services on one hand and available hardware resource
the other. This information is collected in the Platform Definition Descriptor (PDD)
made available through dedicated services. 

The descriptors are generated from a model-based tool chain. The model engineer first 
defines a platform independent model which describes application components, 
communication channels, provided and requested services, message formats

level architecture is then mapped onto the platform, i.e. to hardware nodes, 
partitions, communication buses, etc. In contrast to general purpose modelling 
approaches that are based on automatic transformations, this mapping is done 

ing the PIM-PSM Mapping editor. During the mapping process, the 
wide architecture is broken down to modules and their partitioning layout

output of the process is a description of the mapping of the architecture to the platform, 
hence, a new model, but also configuration items on module level for different operating 
system (currently, VxWorks and SIMA) describing memory layout, partition schedules

the location of service components. The tool also generates glue 
code needed to link the components together.   

ECS application to the AIDA platform, a set of components 
ntegrated into the development tool chain and into the run-time environment. 

overview on the components that were used during demonstrator integration:
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lly, they can and shall use services 
defined by the AIDA middleware to invoke local or remote services and to exchange 

logically - hosted as layer 
may implement this architecture differently; 

VxWorks 653, for instance, does not instantiate the partition operating system (POS) 
s virtual address space. This 

by separating A653 services in an own partition. 

services, the AIDA broker, responsible 
for remote invocation and data distribution services, the reconfiguration services (Boot 
Switcher, System Manager) and the System Health Monitor may be placed in separate 

, this is depicted by placing a layer of partitioned platform 

The elements of the AIDA architecture, such as services, platform and applications, are 
are defined by their 

requirements (memory, time resources, services) collected in the Application 
). Services are defined by the resources they provide, 

). The platform as a whole is defined 
in terms of applications and services on one hand and available hardware resources on 

Descriptor (PDD) that is 

based tool chain. The model engineer first 
t model which describes application components, 

provided and requested services, message formats and so on. 
to hardware nodes, 

In contrast to general purpose modelling 
approaches that are based on automatic transformations, this mapping is done 

mapping process, the 
eir partitioning layouts. The 

description of the mapping of the architecture to the platform, 
hence, a new model, but also configuration items on module level for different operating 

partition schedules, 
the location of service components. The tool also generates glue 

ECS application to the AIDA platform, a set of components had to be 
time environment. Figure 9 

overview on the components that were used during demonstrator integration: 
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The components are:  

• The ECS application

• The SIMA execut

• The VxWorks execution and development e

• The AIDA Mapping Editor
models to the platform;

• The AIDA Java VM 
PERC Pico; 

• The AIDA Logbook System; this is a 
similar to ARINC 653 Logbooks (described in part 2 of the standard). The 
logbooks as well as the client
transparent. Logbook and application instances can be hosted on different nodes 
in the system. Schedules, memory resources and communication lines are 
configuration controlled and the necessary artefacts l
code are generated by the model

• The AIDA Reconfiguration Engine, based on Multi
platform-wide service that allows the re
hardware failures on 

; all rights reserved 

Figure 9: AIDA Components 

application; 

The SIMA execution and development environments; 

orks execution and development environment; 

The AIDA Mapping Editor that defines a mapping of high-level architecture 
models to the platform; 

Java VM that was implemented using Atego’s Safety Critical Java VM 

The AIDA Logbook System; this is a remote service that provides logbooks 
similar to ARINC 653 Logbooks (described in part 2 of the standard). The 
logbooks as well as the client applications that use these logbooks are location 
transparent. Logbook and application instances can be hosted on different nodes 
in the system. Schedules, memory resources and communication lines are 
configuration controlled and the necessary artefacts like configurations and glue 
code are generated by the model-based tool chain; 

The AIDA Reconfiguration Engine, based on Multi-Static Configurations; this is a 
wide service that allows the re-hosting of applications in case of 

hardware failures on start-up.  
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level architecture 

that was implemented using Atego’s Safety Critical Java VM 

service that provides logbooks 
similar to ARINC 653 Logbooks (described in part 2 of the standard). The 

applications that use these logbooks are location 
transparent. Logbook and application instances can be hosted on different nodes 
in the system. Schedules, memory resources and communication lines are 

ike configurations and glue 

Static Configurations; this is a 
hosting of applications in case of 
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• The AIDA Broker; this is a set of components, implementing the DDS 
communication infrastructure; the component is not further described in this 
document.  

44..22  DDEEMMOONNSSTTRRAATTOORR

The ECS components were implemented on three computers, two Inte
computers running SIMA on top of Linux, and one PPC on
a Concurrent real-time Linux system was used to host 
simulator was connected to the ECS system by means of a standalone SIMA 
that uses the ARINC 653 API, without time partitioning
Windows-based desktop computers served as display and control station and 
development host, respectively. 

Linux

Simulator/Testing PC

EuroSim

ECS Simulation (for ref.)
ECS Plant simulation

(Simulink models

Eurosim&Vincent

Test 

Network

Avionics Network

SIMA

ECS plant bridge

Figure 

The computers were connected by two networks: an avionics network for application 
interoperability and a test network that was used for measu
component deployment.

For the environment simulator the EuroSim
display system is based on the glass cockpit emulator Vincent.

Note that Figure 10 does not show the complete mapping of all components (
logbooks) to modules and partitions. The reason is that the demonstrator uses multi
static configurations, i.e
during start-up. There is, hence, not one mapping of components to hardware nodes 
and partitions, but a set of such mappings. 
section 4.6. 

The following photo gives an i
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The AIDA Broker; this is a set of components, implementing the DDS 
communication infrastructure; the component is not further described in this 

RR  AARRCCHHIITTEECCTTUURREE  

The ECS components were implemented on three computers, two Inte
computers running SIMA on top of Linux, and one PPC on-board computer

time Linux system was used to host an environment s
simulator was connected to the ECS system by means of a standalone SIMA 
that uses the ARINC 653 API, without time partitioning (ECS Plant Bridge)

based desktop computers served as display and control station and 
development host, respectively. Figure 10 depicts this architecture:  
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Figure 10: Demonstrator Architecture6 

The computers were connected by two networks: an avionics network for application 
interoperability and a test network that was used for measurements, test exec
component deployment. 

For the environment simulator the EuroSim [AD.9] simulation framework was used. The 
display system is based on the glass cockpit emulator Vincent. 

does not show the complete mapping of all components (
logbooks) to modules and partitions. The reason is that the demonstrator uses multi

i.e. several pre-defined mappings for the case of hardware failures
There is, hence, not one mapping of components to hardware nodes 

and partitions, but a set of such mappings. Complete descriptions are given below in 

The following photo gives an impression of the ECS test bench: 
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The AIDA Broker; this is a set of components, implementing the DDS 
communication infrastructure; the component is not further described in this 

The ECS components were implemented on three computers, two Intel-based desktop 
board computer. Additionally, 

environment simulator. The 
simulator was connected to the ECS system by means of a standalone SIMA application 

(ECS Plant Bridge). Two 
based desktop computers served as display and control station and 

NLR

Network

 

The computers were connected by two networks: an avionics network for application 
rements, test execution and 

simulation framework was used. The 

does not show the complete mapping of all components (e.g. 
logbooks) to modules and partitions. The reason is that the demonstrator uses multi-

defined mappings for the case of hardware failures 
There is, hence, not one mapping of components to hardware nodes 

Complete descriptions are given below in 
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Figure 

The computers on this picture are (from left to right):

• Target 2-PC; 

• Target 3-PC; 

• The PPC development board for the VxWorks system (Target 1

• The display control station, running Vincent;

• The real target computer (used 
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Figure 11: Demonstrator Test Bench7
 

The computers on this picture are (from left to right): 

The PPC development board for the VxWorks system (Target 1-

ontrol station, running Vincent; 

The real target computer (used as Target 1-PPC for demonstration purposes
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-PPC); 

for demonstration purposes). 
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44..33  TTHHEE  AAIIDDAA  DDEEVVEELL

The AIDA tool chain is quite complex. It comprises artefacts on the system
platform level, the module level
from different vendors such that output from one set of tools has to match the expected 
input of another set of tools
chain: 

; all rights reserved 

LLOOPPMMEENNTT  EENNVVIIRROONNMMEENNTT  

The AIDA tool chain is quite complex. It comprises artefacts on the system
platform level, the module level and the partition level. Moreover, it integrates tools 
from different vendors such that output from one set of tools has to match the expected 
input of another set of tools. See Figure 12 as an illustration of the 

Figure 12: AIDA Toolchain for SIMA 
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The AIDA tool chain is quite complex. It comprises artefacts on the system-wide 
Moreover, it integrates tools 

from different vendors such that output from one set of tools has to match the expected 
 SIMA-based tool 
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The top-most input to the tool chain is the 
describes the system on architecture level. The PIM is mapped onto the available 
hardware and the ARINC 653 platform. This is done by means of the mapping editor, a 
tool developed in the scope of the DIANA project. The output of the tool is a set of 
configuration and code artefacts that are introduced into 
In particular, the mapping tool creates an ARINC 653 standard configuration file and the 
SIMA-specific configuration file. 
further processing of the configuration in the development tool chain 
application (i.e. partition) level.
of the module, but this is of course not visible in this figure.

A set of code artefacts is needed for ports and logbooks; these artefacts are created by 
the makebooks and makeports

The application-specific C code may come from different sources. In the case of Java 
applications, the C code is

For applications, written directly in C, this 
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada
shown in the figure. 

When all C artefacts are
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries, 
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual 
Machine) and AIDA (Java APEX 
on). 

The lower part of the process, the partition level, is iterated over all partitions in the 
system. Note that for multi
iterated, on platform level, over all configurations. This step is not shown in 
keep the diagram readable.

44..44  JJAAVVAA  OONN  AARRIINNCC  66

The porting of PERC Pico
concentrated on very few points, such as threading and priority inheritance, in particular
[AD.5]. PERC Pico relies on a simple memory model, a set of annotations, and a 
powerful static verification tool. It compares advantageously to solutions based on
Scoped Memory, a concept proposed by the Real
particular when modularity and runtime safety 
— are concerned. 

PERC Pico supports the scheduling model proposed by the S
Technology (SCJT), which is fixed priority pre
priority and with the priority ceiling emulation protocol as priority inversion control 
mechanism.  

The implementation of this scheduling on top of APEX ca
problem with APEX (and with many other operating system), is the absence of the 
priority ceiling emulation protocol for locks.

For making up this limitation and implementing correctly the Java scheduling model on 
top of operating systems such as APEX, PERC Pico does not use a one
for scheduling and consequently a Java thread is not equivalent to an APEX process. 
PERC Pico handles the scheduling of Java threads

; all rights reserved 

most input to the tool chain is the Platform Independent Model (PIM) 
describes the system on architecture level. The PIM is mapped onto the available 

e and the ARINC 653 platform. This is done by means of the mapping editor, a 
tool developed in the scope of the DIANA project. The output of the tool is a set of 
configuration and code artefacts that are introduced into the target platform tool chains. 

particular, the mapping tool creates an ARINC 653 standard configuration file and the 
specific configuration file. The configuration files have module scope, but 

further processing of the configuration in the development tool chain enters directly
application (i.e. partition) level. Note that the configuration is used also during execution 
of the module, but this is of course not visible in this figure. 

A set of code artefacts is needed for ports and logbooks; these artefacts are created by 
makeports tools from the SIMA tool chain. 

specific C code may come from different sources. In the case of Java 
applications, the C code is generated by PERC Pico-specific tools.  

For applications, written directly in C, this code is generated by human engineers or 
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada

When all C artefacts are created the tool chain flows into the standard GNU 
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries, 
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual 
Machine) and AIDA (Java APEX API, Logbooks middleware, Broker middleware and so 

The lower part of the process, the partition level, is iterated over all partitions in the 
system. Note that for multi-static configurations, the process has to be additionally 

evel, over all configurations. This step is not shown in 
keep the diagram readable. 

665533  AAPPEEXX  

PERC Pico to the ARINC 653 APEX interface raises few difficulties 
on very few points, such as threading and priority inheritance, in particular

. PERC Pico relies on a simple memory model, a set of annotations, and a 
powerful static verification tool. It compares advantageously to solutions based on

, a concept proposed by the Real-Time Specification for Java (
particular when modularity and runtime safety — or, the other way round, testing effort 

PERC Pico supports the scheduling model proposed by the Safety
), which is fixed priority pre-emptive scheduling with 

with the priority ceiling emulation protocol as priority inversion control 

The implementation of this scheduling on top of APEX can be problematic. The main 
problem with APEX (and with many other operating system), is the absence of the 
priority ceiling emulation protocol for locks. 

For making up this limitation and implementing correctly the Java scheduling model on 
systems such as APEX, PERC Pico does not use a one

for scheduling and consequently a Java thread is not equivalent to an APEX process. 
PERC Pico handles the scheduling of Java threads internally.  
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Platform Independent Model (PIM) that 
describes the system on architecture level. The PIM is mapped onto the available 

e and the ARINC 653 platform. This is done by means of the mapping editor, a 
tool developed in the scope of the DIANA project. The output of the tool is a set of 

the target platform tool chains. 
particular, the mapping tool creates an ARINC 653 standard configuration file and the 

The configuration files have module scope, but the 
enters directly the 

Note that the configuration is used also during execution 

A set of code artefacts is needed for ports and logbooks; these artefacts are created by 

specific C code may come from different sources. In the case of Java 

code is generated by human engineers or 
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK. 

Note that Ada was not used for the ECS demonstrator and, hence, no Ada-specific tool is 

chain flows into the standard GNU compile 
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries, 
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual 

API, Logbooks middleware, Broker middleware and so 

The lower part of the process, the partition level, is iterated over all partitions in the 
static configurations, the process has to be additionally 

evel, over all configurations. This step is not shown in Figure 12 to 

APEX interface raises few difficulties 
on very few points, such as threading and priority inheritance, in particular 

. PERC Pico relies on a simple memory model, a set of annotations, and a 
powerful static verification tool. It compares advantageously to solutions based on 

Time Specification for Java (RTSJ), in 
or, the other way round, testing effort 

afety-Critical Java 
 FIFO order within 

with the priority ceiling emulation protocol as priority inversion control 

n be problematic. The main 
problem with APEX (and with many other operating system), is the absence of the 

For making up this limitation and implementing correctly the Java scheduling model on 
systems such as APEX, PERC Pico does not use a one-to-one mapping 

for scheduling and consequently a Java thread is not equivalent to an APEX process. 
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Fully controlling the scheduling of Java th
a bounded execution time for every Java synchronis
methods and wait/notify/notifyAll operations). 

Automatic Garbage collection technologies are not considered certifiable for the m
since the memory heap, which is modified concurrently by multiple threads and the 
garbage collector itself, is too complex for static analysis.

The RTSJ specification has defined another allocation mechanism for Java program
based on scoped memory a
RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to 
prove that the usage of scopes and the reference assignment to a given scoped object 
will not raise any runtime exception can be very difficult.

Concerning the allocation of scoped
the area will not be allocated from the current memory area, leaving the programmer in 
doubt about the success of this operation, 

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on 
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided, 
and the maximum memory usage computatio
computation of the maximum stack usage which is a tractable problem.

PERC Pico introduces a series of annotations that allow the program
which context an object will be used.
every scope and to handle the scope change using the RTSJ API, PERC Pico 
automatically creates a local scope for every method and uses the programmer's 
annotations to determine where to safely allocate objects when a “new” operation is 
performed. The annotations do not prevent the code to run with any other Java VM.

During the DIANA project, PERC Pico was ported to 
porting activity revealed that the behavio
thanks to the compliance to the ARINC 653 standard 
significant differences. Indeed, every standard leaves decisions to the implementation; 
this guarantees that (existing) systems with different design approaches may fr
compete implementing the standard
differences in initialisation, configuration and the application of error recovery 
mechanisms. For the applications running on top of 
visible difference in the behavio
those differences.  

The ECS application, namely the Zone Controller and the Pack Controller, was ported to 
Java, using the PERC Pico memory annotations. The resulting code was compiled wi
the tool chains for SIMA and VxWorks and run on both systems without any code 
changes on application level. The behavior produced by the components on different 
platforms was the same and components hosted on different modules in
without any problem. 

Since SIMA had already been tes
ARINC 653 GMV and the 
simulator would be very close to the behavio
However, the porting of a Safety Critical Java 
strict compliance of SIMA to the ARINC 653
that the compliance was not paid 
simulator did not form any obstacles to the porting of the VM and its integration with the 
demonstrator applications.
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Fully controlling the scheduling of Java threads allows PERC Pico scheduler to guarantee 
n time for every Java synchronisation mechanism (synchronized 

methods and wait/notify/notifyAll operations).  

Automatic Garbage collection technologies are not considered certifiable for the m
since the memory heap, which is modified concurrently by multiple threads and the 
garbage collector itself, is too complex for static analysis. 

The RTSJ specification has defined another allocation mechanism for Java program
based on scoped memory areas. The allocation and de-allocation time of objects inside 
RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to 
prove that the usage of scopes and the reference assignment to a given scoped object 

time exception can be very difficult. 

erning the allocation of scoped memory areas, the RTSJ specification just says that 
the area will not be allocated from the current memory area, leaving the programmer in 
doubt about the success of this operation, especially in case of memory fragmentation.

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on 
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided, 
and the maximum memory usage computation of a program is reduced to the 
computation of the maximum stack usage which is a tractable problem.

PERC Pico introduces a series of annotations that allow the programmer to specify in 
object will be used. Instead of requiring the progra

every scope and to handle the scope change using the RTSJ API, PERC Pico 
automatically creates a local scope for every method and uses the programmer's 
annotations to determine where to safely allocate objects when a “new” operation is 

The annotations do not prevent the code to run with any other Java VM.

During the DIANA project, PERC Pico was ported to VxWorks 653, PikeOS 
porting activity revealed that the behaviour of the implementations are very similar 

to the compliance to the ARINC 653 standard — but nevertheless show some 
significant differences. Indeed, every standard leaves decisions to the implementation; 
this guarantees that (existing) systems with different design approaches may fr

e implementing the standard. Concerning the selected platforms, th
ation, configuration and the application of error recovery 

mechanisms. For the applications running on top of PERC Pico, there should be no 
in the behaviour – it is the main objective of Java in AIDA 

The ECS application, namely the Zone Controller and the Pack Controller, was ported to 
sing the PERC Pico memory annotations. The resulting code was compiled wi

the tool chains for SIMA and VxWorks and run on both systems without any code 
changes on application level. The behavior produced by the components on different 
platforms was the same and components hosted on different modules in

Since SIMA had already been tested against the Conformity Test specified in part 3 of 
ARINC 653 GMV and the DIANA project team were confident that the behaviour of the 
simulator would be very close to the behaviour of any ARINC 653 compliant RTOS.
However, the porting of a Safety Critical Java VM was an excellent demonstration of the 
strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same time 
that the compliance was not paid with decreased flexibility. In the contrary, the
simulator did not form any obstacles to the porting of the VM and its integration with the 
demonstrator applications. 
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reads allows PERC Pico scheduler to guarantee 
ation mechanism (synchronized 

Automatic Garbage collection technologies are not considered certifiable for the moment 
since the memory heap, which is modified concurrently by multiple threads and the 

The RTSJ specification has defined another allocation mechanism for Java programs 
allocation time of objects inside 

RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to 
prove that the usage of scopes and the reference assignment to a given scoped object 

memory areas, the RTSJ specification just says that 
the area will not be allocated from the current memory area, leaving the programmer in 

especially in case of memory fragmentation. 

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on 
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided, 

n of a program is reduced to the 
computation of the maximum stack usage which is a tractable problem. 

mer to specify in 
Instead of requiring the programmer to allocate 

every scope and to handle the scope change using the RTSJ API, PERC Pico 
automatically creates a local scope for every method and uses the programmer's 
annotations to determine where to safely allocate objects when a “new” operation is 

The annotations do not prevent the code to run with any other Java VM. 

PikeOS and SIMA. The 
implementations are very similar — 

but nevertheless show some 
significant differences. Indeed, every standard leaves decisions to the implementation; 
this guarantees that (existing) systems with different design approaches may fruitfully 

. Concerning the selected platforms, there are 
ation, configuration and the application of error recovery 

, there should be no 
it is the main objective of Java in AIDA to hide 

The ECS application, namely the Zone Controller and the Pack Controller, was ported to 
sing the PERC Pico memory annotations. The resulting code was compiled with 

the tool chains for SIMA and VxWorks and run on both systems without any code 
changes on application level. The behavior produced by the components on different 
platforms was the same and components hosted on different modules interoperated 

specified in part 3 of 
project team were confident that the behaviour of the 

r of any ARINC 653 compliant RTOS. 
demonstration of the 

standard. It demonstrated at the same time 
flexibility. In the contrary, the 

simulator did not form any obstacles to the porting of the VM and its integration with the 
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44..55  AAIIDDAA  LLOOGGBBOOOOKKSS

AIDA Logbooks are platform
by means of configuration files (Ser
OS specific configuration files and glue code is generated and introduced into the 
tool chain. 

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

• CREATE_LOGBOOK

• WRITE_LOGBOOK

• READ_LOGBOOK 

• GET_LOGBOOK_STATUS

The difference between AIDA Logbooks and ARINC 653 Logbooks is location
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on 
which this partition is hosted will also result in 
instance of the application needs to continue to write the logbook, it must be ensured by 
the function developer that the logbook instances of the two application instances are 
written in parallel. 

AIDA Logbooks are location transparent and may contain one or more instances. A 
service like WRITE_LOGBOOK

time without the necessity for any further application activity. 

The DIANA implementation of AIDA Logbooks
communication via ARINC 653 queuing ports to request write and read access to AIDA 
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When 
a user application invokes a 

instances requesting to engrave the logbook entry folded into the message into the non
volatile memory. The logbook instances then perform a write operation on their ARINC 
653 Logbook. 

The client side communication is implemented in a mid
logbook services to the application in the same partition. Internally, these services 
mere communication stubs that exchange messages with the logbook instances.
applications may be coded in Java; AIDA Logbooks prov
binding for this communication stubs. 

Figure 13 shows an AIDA logbook system with three redundant instances and one user 
application using this logbook. The red lines around the components show partiti
for redundancy reasons, hardware boundaries. It is technically possible, of course, to 
host more than one replica of a logbook or one of the replicas and the user application 
together on the same computer; for redundancy reasons, this is not useful

; all rights reserved 

SS  

AIDA Logbooks are platform-wide service components that can be plugged
by means of configuration files (Service Definition Descriptors). From these descriptors, 
OS specific configuration files and glue code is generated and introduced into the 

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

CREATE_LOGBOOK 

WRITE_LOGBOOK  

 

GET_LOGBOOK_STATUS 

The difference between AIDA Logbooks and ARINC 653 Logbooks is location
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on 
which this partition is hosted will also result in a failure of the logbook. If a backup 
instance of the application needs to continue to write the logbook, it must be ensured by 
the function developer that the logbook instances of the two application instances are 

cation transparent and may contain one or more instances. A 
WRITE_LOGBOOK will result in writing a message in all instances at the same 

time without the necessity for any further application activity.  

The DIANA implementation of AIDA Logbooks uses ARINC 653 Logbooks 
communication via ARINC 653 queuing ports to request write and read access to AIDA 
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When 
a user application invokes a service like WRITE_LOGBOOK a message is sent to all

instances requesting to engrave the logbook entry folded into the message into the non
. The logbook instances then perform a write operation on their ARINC 

The client side communication is implemented in a middleware layer that provides the 
logbook services to the application in the same partition. Internally, these services 
mere communication stubs that exchange messages with the logbook instances.
applications may be coded in Java; AIDA Logbooks provide, hence, a Java language 
binding for this communication stubs.  

shows an AIDA logbook system with three redundant instances and one user 
application using this logbook. The red lines around the components show partiti
for redundancy reasons, hardware boundaries. It is technically possible, of course, to 
host more than one replica of a logbook or one of the replicas and the user application 
together on the same computer; for redundancy reasons, this is not useful
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wide service components that can be plugged into a system 
vice Definition Descriptors). From these descriptors, 

OS specific configuration files and glue code is generated and introduced into the target 

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.: 

The difference between AIDA Logbooks and ARINC 653 Logbooks is location and scope: 
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on 

a failure of the logbook. If a backup 
instance of the application needs to continue to write the logbook, it must be ensured by 
the function developer that the logbook instances of the two application instances are 

cation transparent and may contain one or more instances. A 
will result in writing a message in all instances at the same 

uses ARINC 653 Logbooks and 
communication via ARINC 653 queuing ports to request write and read access to AIDA 
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When 

ge is sent to all 

instances requesting to engrave the logbook entry folded into the message into the non-
. The logbook instances then perform a write operation on their ARINC 

dleware layer that provides the 
logbook services to the application in the same partition. Internally, these services are 
mere communication stubs that exchange messages with the logbook instances. AIDA 

ide, hence, a Java language 

shows an AIDA logbook system with three redundant instances and one user 
application using this logbook. The red lines around the components show partition and, 
for redundancy reasons, hardware boundaries. It is technically possible, of course, to 
host more than one replica of a logbook or one of the replicas and the user application 
together on the same computer; for redundancy reasons, this is not useful. 
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Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC 
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore 
implemented directly on top of SIMA
host logbook servers to 
ARINC 653 compliant system.

ARINC 653 defines logbooks with a two
requests writing a message this message is first stored in a buffer in volatile memory. It 
is later written to the non
engraving the message is not directly imposed on the calling process; instead, the 
implementation has to define a policy for the scheduling of writing messages.

SIMA uses a system partition to implement such a policy.
engraving the message to non
partition. Moreover, the f
encapsulation of system

The message buffer that temporarily holds the messages before they are engraved
implemented by a shared memory segment between the system partition a
application partition. The following figure illustrates the design:

; all rights reserved 

 

Figure 13: AIDA Logbooks 

Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC 
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore 
implemented directly on top of SIMA. This limited the available modules
host logbook servers to Linux/SIMA nodes. However, clients could still be hosted on any 
ARINC 653 compliant system. 

ARINC 653 defines logbooks with a two-phase writing algorithm. When an application 
message this message is first stored in a buffer in volatile memory. It 

is later written to the non-volatile storage medium. This way, the time necessary for 
engraving the message is not directly imposed on the calling process; instead, the 

has to define a policy for the scheduling of writing messages.

ystem partition to implement such a policy. The time, necessary for 
engraving the message to non-volatile memory is taken from scheduling windows of this 

he fact that the engraver is part of a separated partition eases the 
encapsulation of system-specific code. 

that temporarily holds the messages before they are engraved
implemented by a shared memory segment between the system partition a
application partition. The following figure illustrates the design: 

 

Figure 14: SIMA Logbook 
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Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC 
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore 

ed the available modules available to 
nodes. However, clients could still be hosted on any 

phase writing algorithm. When an application 
message this message is first stored in a buffer in volatile memory. It 

volatile storage medium. This way, the time necessary for 
engraving the message is not directly imposed on the calling process; instead, the 

has to define a policy for the scheduling of writing messages. 

The time, necessary for 
volatile memory is taken from scheduling windows of this 

act that the engraver is part of a separated partition eases the 

that temporarily holds the messages before they are engraved is 
implemented by a shared memory segment between the system partition and the 
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In the ECS demonstrator a logbook for the pack controller, 

implemented. The instances of the logbook were distri
the system. Note that the logbook instances can only run on SIMA, since VxWorks does 
not provide ARINC 653 Logbooks. However
systems; it is, hence, 
achieve this, it was not necessary to change any code between VxWorks and SIMA to 
provide the functionality to both systems.

The use of a simulator turned out to be extremely useful. As a research project, DIANA 
aimed at implementing new and experimental features that are, partly by nature, not 
available in COTS that respond to strict safety demands. As a simulator, SIMA is not 
expected to fulfil real on
expensive to implement advanced features like the ARINC 653 extended services or 
entirely new services proposed by research activities.

44..66  MMUULLTTII--SSTTAATTIICC  RREE

AIDA extends IMA by supporting a first and limited, yet extensible, level of 
reconfiguration. To avoid a grow
particular, in terms of certification effort), reconfiguration capabilities are actually 
restricted: At start-up, an AIDA compliant system selects autonomously the 
configuration that matches the system
qualified set of configurations. This approach is called multi

The first step of the algorithm
the current health state of the sy
reconfiguration domain exchange their private health state, represented by the result of 
the power-up built-in test (PBIT). To ensure, all modules will finally agree on the same 
system health state, a Byzant

The second step of the algorithm is to apply a configuration that corresponds to the 
system health state. This is achieved by a predefined mapping of health states to 
possible configuration. If there i
this configuration is not the currently selected one, the system 
configuration. Setting a configuration is basically done, by changing the entry point to 
the configuration. The entry poi
data should be loaded at boot time. When the configuration 
rebooted and the two steps of the algorithms are repeated. If there was no new failure 
in the system, the algor
hence, the current configuration.

If the configuration that results from the algorithm is identical to the current 
configuration the system
phase. If there is no configuration that maps the current system health state the module 
is passivated. 

The heterogeneity of the systems had
parameterisation of the multi
found for all modules. To achieve this, the algorithm 
target systems. One of the problems 
up had been defined for the demonstrators and, even
– for demonstration to an audience and for benchmarking in the lab 
identified. Therefore, different tolerance delays, between two seconds and two minutes, 
and overall timeouts, between twenty seconds and thre
different demonstration purposes.
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In the ECS demonstrator a logbook for the pack controller, PACK_LOGBOOK

The instances of the logbook were distributed on the two 
the system. Note that the logbook instances can only run on SIMA, since VxWorks does 
not provide ARINC 653 Logbooks. However the logbook client can be used in both 

is, hence, possible to use the service even from a VxWorks system. To 
t was not necessary to change any code between VxWorks and SIMA to 

provide the functionality to both systems.  

The use of a simulator turned out to be extremely useful. As a research project, DIANA 
g new and experimental features that are, partly by nature, not 

available in COTS that respond to strict safety demands. As a simulator, SIMA is not 
expected to fulfil real on-board safety requirements. It is, hence, much easier and less 

ment advanced features like the ARINC 653 extended services or 
entirely new services proposed by research activities. 

EECCOONNFFIIGGUURRAATTIIOONN  

AIDA extends IMA by supporting a first and limited, yet extensible, level of 
reconfiguration. To avoid a growth of software complexity beyond acceptable limits (in 
particular, in terms of certification effort), reconfiguration capabilities are actually 

up, an AIDA compliant system selects autonomously the 
configuration that matches the system’s health state among a pre-
qualified set of configurations. This approach is called multi-static reconfiguration.

The first step of the algorithm, that takes place during the definition phase
the current health state of the system. In order to do so, all modules in the same 
reconfiguration domain exchange their private health state, represented by the result of 

in test (PBIT). To ensure, all modules will finally agree on the same 
system health state, a Byzantine Agreement Protocol is used [AD.4]. 

The second step of the algorithm is to apply a configuration that corresponds to the 
. This is achieved by a predefined mapping of health states to 

possible configuration. If there is a configuration that maps the system health state and 
this configuration is not the currently selected one, the system 
configuration. Setting a configuration is basically done, by changing the entry point to 
the configuration. The entry point is a file that defines which binaries and configuration 

at boot time. When the configuration has been 
rebooted and the two steps of the algorithms are repeated. If there was no new failure 
in the system, the algorithm shall deduct the same configuration as in the first run and, 
hence, the current configuration. 

If the configuration that results from the algorithm is identical to the current 
configuration the system leaves the definition phase and proceeds 

. If there is no configuration that maps the current system health state the module 

heterogeneity of the systems had to be taken into account in the design, coding and 
parameterisation of the multi-static reconfiguration. First, an overall timeout must be 
found for all modules. To achieve this, the algorithm was benchmarked on the different 
target systems. One of the problems was the start-up procedure. No synchronised start
up had been defined for the demonstrators and, even worse, different start

for demonstration to an audience and for benchmarking in the lab 
identified. Therefore, different tolerance delays, between two seconds and two minutes, 
and overall timeouts, between twenty seconds and three minutes, 
different demonstration purposes. 
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PACK_LOGBOOK, was 

two SIMA targets in 
the system. Note that the logbook instances can only run on SIMA, since VxWorks does 

can be used in both 
m a VxWorks system. To 

t was not necessary to change any code between VxWorks and SIMA to 

The use of a simulator turned out to be extremely useful. As a research project, DIANA 
g new and experimental features that are, partly by nature, not 

available in COTS that respond to strict safety demands. As a simulator, SIMA is not 
board safety requirements. It is, hence, much easier and less 

ment advanced features like the ARINC 653 extended services or 

AIDA extends IMA by supporting a first and limited, yet extensible, level of 
th of software complexity beyond acceptable limits (in 

particular, in terms of certification effort), reconfiguration capabilities are actually 
up, an AIDA compliant system selects autonomously the 

-defined and pre-
static reconfiguration.  

definition phase, determines 
stem. In order to do so, all modules in the same 

reconfiguration domain exchange their private health state, represented by the result of 
in test (PBIT). To ensure, all modules will finally agree on the same 

The second step of the algorithm is to apply a configuration that corresponds to the 
. This is achieved by a predefined mapping of health states to 

maps the system health state and 
this configuration is not the currently selected one, the system sets this new 
configuration. Setting a configuration is basically done, by changing the entry point to 

nt is a file that defines which binaries and configuration 
 set the system is 

rebooted and the two steps of the algorithms are repeated. If there was no new failure 
nfiguration as in the first run and, 

If the configuration that results from the algorithm is identical to the current 
leaves the definition phase and proceeds to the operation 

. If there is no configuration that maps the current system health state the module 

to be taken into account in the design, coding and 
rst, an overall timeout must be 

benchmarked on the different 
up procedure. No synchronised start-

worse, different start-up scenarios 
for demonstration to an audience and for benchmarking in the lab – had been 

identified. Therefore, different tolerance delays, between two seconds and two minutes, 
e minutes, were chosen for 
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Another issue that must be solved is the module reset and passivation mechanism. For 
RESET, the ARINC 653 health monitor 
error is raised by the recon
hence, propagated to the partition health monitor where RESET was defined as the 
corresponding error response action. 

On SIMA, a system-specific 

procedure apx_shutdown

(MODE        

 RETURN_CODE

error 

when (

when (

normal 

if (MODE is APX_SHUTDOWN_HALT) then

 

else if (MODE is APX_SHUTDOWN_RESET) then

 

end if;

RETURN_CODE := NO_ERROR;

end apx_shutdown

In spite of being a SIMA
653 services. It takes two arguments: the 
all ARINC 653 services, the 
caller. Possible errors are 
MODE parameter determines which of two possible actions shall be applied: 
RESET. On SIMA, the apx_shutdown 

the reset action. 

Concerning passivation, the 
On VxWorks 653, however, where no such functionality is available, the Mu
Schedules service was 
reconfiguration engine requests to switc
continues to work, but no application is ever scheduled.

The system-specific code 
requests by the reconfiguration engine. There is one generic system part
module, implementing also other system
applications, e.g. ARINC 653 logbook
reconfiguration approach, 

The reconfiguration engine is host
connected to the reconfiguration engines on other modules by queuing ports that 
implement the channels 
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Another issue that must be solved is the module reset and passivation mechanism. For 
RESET, the ARINC 653 health monitor was used on VxWorks and VxSim:
error is raised by the reconfiguration engine that is not handled within the partition and, 
hence, propagated to the partition health monitor where RESET was defined as the 
corresponding error response action.  

specific shutdown service is available that is defined 

apx_shutdown 

MODE        : in SHUTDOWN_MODE_TYPE; 

RETURN_CODE : out RETURN_CODE_TYPE) is 

when (current partition is not allowed to issue this 

command) => 

RETURN_CODE := INVALID_CONFIG; 

when (MODE does not identify a valid shutdown mode

RETURN_CODE := INVALID_PARAMETER; 

if (MODE is APX_SHUTDOWN_HALT) then 

stop module; 

else if (MODE is APX_SHUTDOWN_RESET) then 

reboot module; 

end if; 

RETURN_CODE := NO_ERROR; 

apx_shutdown; 

In spite of being a SIMA-specific interface, the service is defined in the style of ARINC 
653 services. It takes two arguments: the MODE and the RETURN_CODE
all ARINC 653 services, the RETURN_CODE is used to pass error information back to the 
caller. Possible errors are INVALID_CONFIG, INVALID_PARAMETER and
MODE parameter determines which of two possible actions shall be applied: 

apx_shutdown service with RESET mode was used to implement 

Concerning passivation, the shutdown service was, again, the natural choice 
On VxWorks 653, however, where no such functionality is available, the Mu

was exploited instead. Instead of shutting down the system, the 
reconfiguration engine requests to switch to an empty module schedule. The module 
continues to work, but no application is ever scheduled. 

specific code was encapsulated in a system partition that answers service 
requests by the reconfiguration engine. There is one generic system part
module, implementing also other system-specific services that may be requested by 

ARINC 653 logbooks. This way, the overhead, introduced by the 
reconfiguration approach, was kept to a minimum. 

The reconfiguration engine is hosted on one partition per module. This partition is 
connected to the reconfiguration engines on other modules by queuing ports that 
implement the channels of the Byzantine Agreement protocol. This is depicted below: 
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Another issue that must be solved is the module reset and passivation mechanism. For 
used on VxWorks and VxSim: An application 

figuration engine that is not handled within the partition and, 
hence, propagated to the partition health monitor where RESET was defined as the 

is defined as follows: 

current partition is not allowed to issue this 

down mode) => 

e, the service is defined in the style of ARINC 
RETURN_CODE. As in almost 
error information back to the 

and NO_ERROR. The 
MODE parameter determines which of two possible actions shall be applied: HALT or 

mode was used to implement 

natural choice on SIMA. 
On VxWorks 653, however, where no such functionality is available, the Multiple Module 

Instead of shutting down the system, the 
h to an empty module schedule. The module 

encapsulated in a system partition that answers service 
requests by the reconfiguration engine. There is one generic system partition per 

specific services that may be requested by 
. This way, the overhead, introduced by the 

ed on one partition per module. This partition is 
connected to the reconfiguration engines on other modules by queuing ports that 

the Byzantine Agreement protocol. This is depicted below:  
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Again, the Multiple Module Schedules service 
possible: After a successful completion of the algorithm, i.e., when at the end of the 
algorithm the new configuration is equal to the current c
schedule is requested that does not contain the execution windows for the 
reconfiguration engine anymore. In consequence, the reconfiguration engine will not 
consume any time resources after the system has entered operational ph

For the ECS demonstrator, three configuration scenarios 

• Configuration C0 is the basic configuration with all hardware nodes available;

• Configuration C1 is a degraded configuration with the VxWorks node failing;

• Configuration C2 is the d
failing. 

Figure 16 illustrates this 

; all rights reserved 

Figure 15: IMA Reconfiguration Engine 

Again, the Multiple Module Schedules service was used to keep the overhead as small as 
possible: After a successful completion of the algorithm, i.e., when at the end of the 
algorithm the new configuration is equal to the current configuration, a switch to a 
schedule is requested that does not contain the execution windows for the 
reconfiguration engine anymore. In consequence, the reconfiguration engine will not 
consume any time resources after the system has entered operational ph

For the ECS demonstrator, three configuration scenarios were defined: 

Configuration C0 is the basic configuration with all hardware nodes available;

Configuration C1 is a degraded configuration with the VxWorks node failing;

Configuration C2 is the degraded configuration with one of the SIMA nodes 

illustrates this approach: 
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used to keep the overhead as small as 
possible: After a successful completion of the algorithm, i.e., when at the end of the 

onfiguration, a switch to a 
schedule is requested that does not contain the execution windows for the 
reconfiguration engine anymore. In consequence, the reconfiguration engine will not 
consume any time resources after the system has entered operational phase.  

 

Configuration C0 is the basic configuration with all hardware nodes available; 

Configuration C1 is a degraded configuration with the VxWorks node failing; 

egraded configuration with one of the SIMA nodes 
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Figure 16: Reconfiguration Scenario for ECS Demonstrator

In Figure 16, modules depicted in blue are Intel desktop PCs running Linux with the 
SIMA environment. Modules depicted in red are PPC

In configuration C0, Module0
Additionally, it hosts two logbook instances of the 

the logbook is hosted together with the primary pack controller on Module1. 
the PPC system, hosts the zone controller. 

All modules have a system partitio
(MultiStat). The system partitions 
reconfiguration engine. The system partitions o
the logbook instances.  

In configuration C1, Module2 has failed. The zone controller is now hosted on Module0. 
In configuration C2, Module1 has failed. The plant controller is now running on Module0. 

                                                
8
 Note that hosting two instances o

of redundancy. This architecture was chosen, because there were only two computers in the demonstrator, 
running SIMA. 
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: Reconfiguration Scenario for ECS Demonstrator

, modules depicted in blue are Intel desktop PCs running Linux with the 
SIMA environment. Modules depicted in red are PPC-based computers running VxWorks. 

Module0 serves as spare for the pack controller hosted on 
Additionally, it hosts two logbook instances of the PACK_LOGBOOK.8 A third instance of 

the logbook is hosted together with the primary pack controller on Module1. 
the PPC system, hosts the zone controller.  

All modules have a system partition and a partition for the reconfiguration engine 
). The system partitions implement all system specific code, needed for the 

reconfiguration engine. The system partitions on Module0 and Module1 
 

uration C1, Module2 has failed. The zone controller is now hosted on Module0. 
In configuration C2, Module1 has failed. The plant controller is now running on Module0. 

         
Note that hosting two instances of the same logbook on the same hardware node is of course not useful in terms 

of redundancy. This architecture was chosen, because there were only two computers in the demonstrator, 
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: Reconfiguration Scenario for ECS Demonstrator 

, modules depicted in blue are Intel desktop PCs running Linux with the 
based computers running VxWorks.  

serves as spare for the pack controller hosted on Module1. 
A third instance of 

the logbook is hosted together with the primary pack controller on Module1. Module2, 

reconfiguration engine 
implement all system specific code, needed for the 

n Module0 and Module1 additionally drive 

uration C1, Module2 has failed. The zone controller is now hosted on Module0. 
In configuration C2, Module1 has failed. The plant controller is now running on Module0. 

f the same logbook on the same hardware node is of course not useful in terms 
of redundancy. This architecture was chosen, because there were only two computers in the demonstrator, 
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Note that a possible third c
none of the components on Module0 can be hosted on one of the other modules in a 
meaningful way. 

The ECS Plant is a single
It acts as a communication bridge between the EuroSim
and the ECS application.
reconfiguration approach. Instead, the communication lines to zone and 
were duplicated and the correct
location of these components.

All modules, the PPC module with VxWorks as well as the SIMA system on Linux, 
performed the reconfiguration algorithm without any problem. In a homogeneous 
environment (i.e. SIMA only), the whole reconfiguration algorithm ran within 
two seconds (worst case)
described above had to be 
phases, up to a minute for the lab benchmarks.

  

; all rights reserved 

Note that a possible third configuration with Module0 failing is not interesting, since 
one of the components on Module0 can be hosted on one of the other modules in a 

The ECS Plant is a single-partition SIMA application that runs on the Concurrent system.
It acts as a communication bridge between the EuroSim environment simul
and the ECS application. Since it is not an AIDA component, it was not integrated in the 
reconfiguration approach. Instead, the communication lines to zone and 

the correct line was selected, depending on the 
location of these components. 

All modules, the PPC module with VxWorks as well as the SIMA system on Linux, 
performed the reconfiguration algorithm without any problem. In a homogeneous 

. SIMA only), the whole reconfiguration algorithm ran within 
(worst case). In a heterogeneous system, the synchronisation issues 

described above had to be taken into account. This resulted in a 
for the lab benchmarks. 

SIMA in DIANA 
Draft 0.7 

Page 30 of 32 

SIMA in DIANA 

is not interesting, since 
one of the components on Module0 can be hosted on one of the other modules in a 

application that runs on the Concurrent system. 
environment simulation [AD.9] 

Since it is not an AIDA component, it was not integrated in the 
reconfiguration approach. Instead, the communication lines to zone and pack controller 

the current physical 

All modules, the PPC module with VxWorks as well as the SIMA system on Linux, 
performed the reconfiguration algorithm without any problem. In a homogeneous 

. SIMA only), the whole reconfiguration algorithm ran within less than 
. In a heterogeneous system, the synchronisation issues 

a longer definition 
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55  TTHHEE  DDEEMMOONNSSTTRR

To complete the demonstrator, the displays 
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a 
fixed base research flight 
cockpit simulation system.

This completely integrated demonstrator was presented at the exhibition of the Avionics 
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airb
A320 cockpit. The ECS control panels were integrated into the cockpit. People using the 
flight simulator could change the cabin temperature and control the effect by means of 
the EuroSim [AD.9] output displayed on a s
hand side of Figure 17): 

ECS target systems 

results displayed by 

EuroSim 

Figure 

On the table on the left 
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture. 
However, the simout output is 
partitioning concept. 

The demonstrator ran for several hours per day with this set
the operating systems, simulators or AIDA components occurred. The DIANA project 
team had sufficient confidence in the system to demonstrate 
environment. This confidence was mainly inspired by the quality of COTS components 
that were used to built the demonstrator.

 

                                                
9
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To complete the demonstrator, the displays were integrated into NLR’s APERO flight 
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a 
fixed base research flight simulator built to provide a flexible avionics prototyping and 
cockpit simulation system. 

This completely integrated demonstrator was presented at the exhibition of the Avionics 
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airb

. The ECS control panels were integrated into the cockpit. People using the 
flight simulator could change the cabin temperature and control the effect by means of 

output displayed on a screen next to the flight simulator (on the left 
):  

APERO flight 

simulator

Integrated ECS 

control panels

Figure 17: ECS Demonstrator at Avionics 20109
 

On the table on the left hand side of Figure 17, the on-board computer, running 
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture. 

output is displayed on the screen to give a visual impression of the 

The demonstrator ran for several hours per day with this set-up. No failures related to 
the operating systems, simulators or AIDA components occurred. The DIANA project 
team had sufficient confidence in the system to demonstrate it with this heterogene
environment. This confidence was mainly inspired by the quality of COTS components 
that were used to built the demonstrator. 
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integrated into NLR’s APERO flight 
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a 

simulator built to provide a flexible avionics prototyping and 

This completely integrated demonstrator was presented at the exhibition of the Avionics 
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airbus 

. The ECS control panels were integrated into the cockpit. People using the 
flight simulator could change the cabin temperature and control the effect by means of 

creen next to the flight simulator (on the left 

 

APERO flight 

simulator 

Integrated ECS 

control panels 
 

board computer, running 
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture. 

displayed on the screen to give a visual impression of the 

up. No failures related to 
the operating systems, simulators or AIDA components occurred. The DIANA project 

with this heterogeneous 
environment. This confidence was mainly inspired by the quality of COTS components 
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66  CCOONNCCLLUUSSIIOONNSS  

In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran 
real-world avionics applicati
errors or memory leaks and even without deadline misses. The use in the DIANA project 
shows impressively that the tool is stable and robust, both in the functional domain and 
in timeliness.  

SIMA also turned out to be an excellent tool for prototyping applications. 
chain is extremely easy to use compared 
developed, integrated and tested 
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the 
initial C-code of ECS application components. 

The low effort and, hence, low cost of the development for the SIMA environment, 
enabled the project team to prototype and c
project achieved remarkable high quality of software components, in particular the APEX 
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and
of course, the ECS application. 

Engineers, not familiar with the ARINC 653 APEX, benefited from SIMA’s easy
yet realistic tool chain. Also, the good quality of documentation and sample code eases 
studying the behaviour of the ARINC 653 services in detail. 

An important factor in the project
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653 
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The 
project could, hence, rely on the fact th
SIMA simulator on Linux would produce the same functional behaviour. 

The porting of a complex environment 
ARINC 653 APEX, using SIMA and real
the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same 
time that the compliance was not paid 
simulator did not form any obstacles to the porting of t
demonstrator applications.

As a research project, DIANA aimed at implementing new and experimental features 
that are not available in 
demanding safety require
potentially complex features difficult and costly. 
respond to real safety 
implement advanced feat
entirely new concepts proposed by research activities.
valuable means in particular for aeronautical research programmes.
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In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran 
world avionics applications for several hours and days without interruption, without 

errors or memory leaks and even without deadline misses. The use in the DIANA project 
shows impressively that the tool is stable and robust, both in the functional domain and 

also turned out to be an excellent tool for prototyping applications. 
chain is extremely easy to use compared to real-target systems. Application code was 

and tested within hours. This advantage was exploited during the
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the 

code of ECS application components.  

The low effort and, hence, low cost of the development for the SIMA environment, 
enabled the project team to prototype and compare different designs. This way, the 
project achieved remarkable high quality of software components, in particular the APEX 
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and

the ECS application.  

not familiar with the ARINC 653 APEX, benefited from SIMA’s easy
yet realistic tool chain. Also, the good quality of documentation and sample code eases 
studying the behaviour of the ARINC 653 services in detail.  

An important factor in the project was SIMA’s proven compliance to ARINC 653. Like 
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653 
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The 
project could, hence, rely on the fact that the real-target RTOS, VxWorks 653, and the 
SIMA simulator on Linux would produce the same functional behaviour. 

The porting of a complex environment such as a complete Safety Critical Java VM to the 
ARINC 653 APEX, using SIMA and real-target RTOS, was an excellent demonstration of 
the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same 
time that the compliance was not paid with lack of flexibility. In the contrary, the 
simulator did not form any obstacles to the porting of the VM and its integration with the 
demonstrator applications. 

As a research project, DIANA aimed at implementing new and experimental features 
not available in real-target systems. Certifiable RTOS have to fulfil extremely 

requirements. This makes the development of new, experimental and 
potentially complex features difficult and costly. As a simulator, SIMA is not expected to 

real safety challenges. It is, hence, much easier and less expensive to 
implement advanced features like the ARINC 653 extended services or

proposed by research activities. A simulator like SIMA is
valuable means in particular for aeronautical research programmes. 
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In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran 
ons for several hours and days without interruption, without 

errors or memory leaks and even without deadline misses. The use in the DIANA project 
shows impressively that the tool is stable and robust, both in the functional domain and 

also turned out to be an excellent tool for prototyping applications. The SIMA tool 
target systems. Application code was 

within hours. This advantage was exploited during the 
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the 

The low effort and, hence, low cost of the development for the SIMA environment, 
ompare different designs. This way, the 

project achieved remarkable high quality of software components, in particular the APEX 
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and, 

not familiar with the ARINC 653 APEX, benefited from SIMA’s easy-to-use, 
yet realistic tool chain. Also, the good quality of documentation and sample code eases 

was SIMA’s proven compliance to ARINC 653. Like 
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653 
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The 

target RTOS, VxWorks 653, and the 
SIMA simulator on Linux would produce the same functional behaviour.  

as a complete Safety Critical Java VM to the 
an excellent demonstration of 

the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same 
lack of flexibility. In the contrary, the 

he VM and its integration with the 

As a research project, DIANA aimed at implementing new and experimental features 
target systems. Certifiable RTOS have to fulfil extremely 

This makes the development of new, experimental and 
As a simulator, SIMA is not expected to 

. It is, hence, much easier and less expensive to 
ures like the ARINC 653 extended services or to integrate 

A simulator like SIMA is, hence, a 


