

GMV-SKYSOFT

Torre Fernão de Magalhães

Av. D. João II Lote 1.17.02, 7º Andar

1998 - 025 Lisboa Portugal

Property of GMV

© GMV, 2010; all rights reserved.

Use of SIMA in
the DIANA
Project
White Paper

© GMV, 2010; all rights reserved

TABLE OF CONTENTS

1 Introduction

1.1 Purpose

1.2 Acronyms

1.3 Reference Documents

1.4 Index of COTS

2 SIMA Overview

3 The ECS Application

4 The Demonstrator Integration

4.1 AIDA Components

4.2 Demonstrator Architecture

4.3 The AIDA Development Environment

4.4 Java on ARINC 653 APEX

4.5 AIDA Logbooks

4.6 Multi-Static Reconfiguration

5 The Demonstrator at Avionics 2010

6 Conclusions

; all rights reserved

TABLE OF CONTENTS

..

...

..

Reference Documents ..

...

...

..

The Demonstrator Integration ..

..

Demonstrator Architecture ..

The AIDA Development Environment ...

Java on ARINC 653 APEX ..

...

Static Reconfiguration ..

The Demonstrator at Avionics 2010 ..

...

SIMA in DIANA
Draft 0.7

Page 2 of 32

SIMA in DIANA

............................ 4

............................... 4

............................ 5

... 7

..................... 7

....................... 8

.. 12

.................................. 16

... 16

................................... 19

..................... 21

...................................... 22

................... 24

.................................. 26

.......................... 31

........................... 32

© GMV, 2010; all rights reserved

LIST OF FIGURES

Figure 1: Partitioning
Figure 2: SIMA Architecture
Figure 3: Partition Visualisation
Figure 4: Air conditioning system
Figure 5: Air conditioning panel
Figure 6: Redundant pack controllers
Figure 7: AIR section of Cruise page
Figure 8: AIDA Architecture
Figure 9: AIDA Components
Figure 10: Demonstrator Architecture
Figure 11: Demonstrator Test Bench
Figure 12: AIDA Toolchain for SIMA
Figure 13: AIDA Logbooks
Figure 14: SIMA Logbook
Figure 15: IMA Reconfiguration Engine
Figure 16: Reconfiguration Scenario for ECS Demonstrator
Figure 17: ECS Demonstrator at Avionics 2010

; all rights reserved

...
Figure 2: SIMA Architecture ..
Figure 3: Partition Visualisation ..

tioning system ..
Figure 5: Air conditioning panel ..
Figure 6: Redundant pack controllers ..
Figure 7: AIR section of Cruise page ...
Figure 8: AIDA Architecture ..
Figure 9: AIDA Components ..
Figure 10: Demonstrator Architecture ...
Figure 11: Demonstrator Test Bench ...
Figure 12: AIDA Toolchain for SIMA ..

books ..
 ..

Figure 15: IMA Reconfiguration Engine ..
Figure 16: Reconfiguration Scenario for ECS Demonstrator
Figure 17: ECS Demonstrator at Avionics 2010

SIMA in DIANA
Draft 0.7

Page 3 of 32

SIMA in DIANA

..................... 8
.. 9

...................................... 10
................................... 12

...................................... 13
.............................. 14

............................... 15
... 16
... 18

............................. 19
............................... 20

................................ 21
... 25

.. 25
............................ 28

................................ 29
.. 31

© GMV, 2010; all rights reserved

11 IINNTTRROODDUUCCTTIIOONN

11..11 PPUURRPPOOSSEE

DIANA was a research and technology development project funded through the
European Commission in
at the implementation of a new avionics platform based on the concepts of Integrated
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture
for Independent Distribut
software development. These novelties consist in both: new tool concepts and new run
time technologies. In terms of tools, AIDA proposes

• To base development of critical on
for early validation and verification of architectures as well as
generation of code and configuration

• To use formal methods for early validation and verification of algorithms.

In terms of new run-time techno

• A new concept of software components that provide

o Basic services and
components);

o Partition

Those service components are describ
defined interfaces; as such they can be
plugged into a system at different physical locations without affecting application
code.

The components extend the ARINC 653 speci
at the same time, they use ARINC 653 basic services (defined in part 1 and part
2 of the specification

• A new communication paradigm based on the Publish and Subscribe
architecture; in the scope of DIANA, a Publish and Subscribe library was
implemented on
Management Group’s (OMG) Data Distribution Services (DDS).

• New Reconfiguration approaches, based on the DDS l
reconfiguration and, for pre
concept, called Multi
availability of aircrafts without increasing the amount of hardware.

• The use of obje
executing applications. The project implemented a Java virtual machine, based
on Atego’s PERC Pico Safety Critical Java VM.
ARINC 653.

In the scope of the DIANA p
and their implementation. Both demonstrators use safety
that had been developed with real on
was based on a Flight Wa
based on an Environmental Control System (ECS), developed by
Aerospace Laboratory (
consisting of real target Power PC (PPC) boa

; all rights reserved

NN

DIANA was a research and technology development project funded through the
European Commission in the scope of the Sixth Framework Programme (FP6). It aimed
at the implementation of a new avionics platform based on the concepts of Integrated
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture
for Independent Distributed Avionics) proposes a series of novelties that ease on
software development. These novelties consist in both: new tool concepts and new run
time technologies. In terms of tools, AIDA proposes

To base development of critical on-board functions on model-based engineering
for early validation and verification of architectures as well as
generation of code and configuration artefacts;

To use formal methods for early validation and verification of algorithms.

time technologies, AIDA proposes

A new concept of software components that provides

asic services and composed services (consisting of a collection of
components);

Partition- and module-local services and platform-wide services;

Those service components are described by configuration files and provide well
defined interfaces; as such they can be offered by different suppliers and can be
plugged into a system at different physical locations without affecting application

The components extend the ARINC 653 specification to the platform level and,
at the same time, they use ARINC 653 basic services (defined in part 1 and part

specification) to implement the advanced features they provide.

A new communication paradigm based on the Publish and Subscribe
hitecture; in the scope of DIANA, a Publish and Subscribe library was

implemented on top of ARINC 653 that follows the specification of the Object
Management Group’s (OMG) Data Distribution Services (DDS).

New Reconfiguration approaches, based on the DDS library for in
reconfiguration and, for pre-flight reconfiguration, based on an innovative
concept, called Multi-Static Reconfiguration (MSR) that is able to improve
availability of aircrafts without increasing the amount of hardware.

The use of object-oriented programming languages and virtual machines (VM)
executing applications. The project implemented a Java virtual machine, based
on Atego’s PERC Pico Safety Critical Java VM. This VM was completely ported to

In the scope of the DIANA project two demonstrators were built to validate the concepts
and their implementation. Both demonstrators use safety-critical avionics applications
that had been developed with real on-board requirements. One of these demonstrators
was based on a Flight Warning System (FWS), developed by THALES, and the other was
based on an Environmental Control System (ECS), developed by
Aerospace Laboratory (NLR). Both demonstrators run on a heterogeneous system
consisting of real target Power PC (PPC) boards and Intel-based desktops. On the PPC

SIMA in DIANA
Draft 0.7

Page 4 of 32

SIMA in DIANA

DIANA was a research and technology development project funded through the
the scope of the Sixth Framework Programme (FP6). It aimed

at the implementation of a new avionics platform based on the concepts of Integrated
Modular Avionics and the ARINC 653 specification. This new platform AIDA (Architecture

ed Avionics) proposes a series of novelties that ease on-board
software development. These novelties consist in both: new tool concepts and new run-

based engineering
for early validation and verification of architectures as well as for automatic

To use formal methods for early validation and verification of algorithms.

composed services (consisting of a collection of

wide services;

ed by configuration files and provide well-
by different suppliers and can be

plugged into a system at different physical locations without affecting application

fication to the platform level and,
at the same time, they use ARINC 653 basic services (defined in part 1 and part

) to implement the advanced features they provide.

A new communication paradigm based on the Publish and Subscribe
hitecture; in the scope of DIANA, a Publish and Subscribe library was

of ARINC 653 that follows the specification of the Object

ibrary for in-flight
flight reconfiguration, based on an innovative

Static Reconfiguration (MSR) that is able to improve
availability of aircrafts without increasing the amount of hardware.

oriented programming languages and virtual machines (VM)
executing applications. The project implemented a Java virtual machine, based

This VM was completely ported to

two demonstrators were built to validate the concepts
critical avionics applications

board requirements. One of these demonstrators
rning System (FWS), developed by THALES, and the other was

based on an Environmental Control System (ECS), developed by Dutch National
. Both demonstrators run on a heterogeneous system

based desktops. On the PPC

© GMV, 2010; all rights reserved

boards, the demonstrators
the desktops, the FWS used VxSim, a host
tool chain, and the ECS used SIMA, GMV’s ARINC 653

This document describes the use of SIMA in the ECS demonstrator. In
short overview on the SIMA execution environment
based on contributions by NLR
integration of the application with the AIDA components is described
extended set-up of the demonstrator at the exhibition of the Avionics Event in
Amsterdam 2010 is shown.

11..22 AACCRROONNYYMMSS

ADIRU Air Data Inertial Reference Unit

AIDA Architecture for Independent Distribu

API Application Programming Interface

APEX Application Executive

ARD Application Requirements Descriptor

ARINC Avionics Radio Inc.

BITE Built

CDS Cockpit Display System

COTS Commercial Off

CPIOM Core Process

CPM Core Processing Module

CPU Central Processing Unit

DAL Development Assurance Level

DDS Data Distribution Services

DIANA Distributed Equipment Independent environment for Advanced avionics
Applications

EC European Commissio

ECS Environmental Control System

ESA European Space Agency

EU European Union

FAA Federal Aviation Administration

FIFO First

FWS Flight Warming System

GCC GNU Compiler Collection

GPL General Public License

HMI Human Machine Interface

HW Hardware

; all rights reserved

demonstrators used Windriver’s VxWorks 653 Safety Critical Platform; on
the desktops, the FWS used VxSim, a host-based simulator part of the

, and the ECS used SIMA, GMV’s ARINC 653 simulator.

This document describes the use of SIMA in the ECS demonstrator. In
short overview on the SIMA execution environment is given. In section
based on contributions by NLR, the ECS Application is presented. In
integration of the application with the AIDA components is described. In

up of the demonstrator at the exhibition of the Avionics Event in
Amsterdam 2010 is shown. Section 6, finally, presents some conclusions.

Air Data Inertial Reference Unit

Architecture for Independent Distributed Avionics

Application Programming Interface

Application Executive

Application Requirements Descriptor

Avionics Radio Inc.

Built-In Test Equipment

Cockpit Display System

Commercial Off-The-Shelf

Core Processing Input/Output Module

Core Processing Module

Central Processing Unit

Development Assurance Level

Data Distribution Services

Distributed Equipment Independent environment for Advanced avionics
Applications

European Commission

Environmental Control System

European Space Agency

European Union

Federal Aviation Administration

First-In/First-Out

Flight Warming System

GNU Compiler Collection

General Public License

Human Machine Interface

Hardware

SIMA in DIANA
Draft 0.7

Page 5 of 32

SIMA in DIANA

used Windriver’s VxWorks 653 Safety Critical Platform; on
part of the VxWorks 653

This document describes the use of SIMA in the ECS demonstrator. In section 2, a
section 3, which is
. In section 4, the
. In section 5, the

up of the demonstrator at the exhibition of the Avionics Event in
, finally, presents some conclusions.

Distributed Equipment Independent environment for Advanced avionics

© GMV, 2010; all rights reserved

IMA Integrated Modular Avionics

IDE Integrated Development Environment

LIFO Last

MDA Model

MDB Model Based Development

MOS Module Operating System

MSR Multi

NPTL Native POSIX Th

OMG Object Management Group

OS Operating Systems

PC Personal Computer

PBIT Power

PDD Platform Definition Descriptor

PIM Platform Independent Model

POS Partition Operating System

PowerPC Performance Optimisation With En
Computing

PPC PowerPC

PSM Platform

POSIX Portable Operating System Interface

RTOS Real Time Operating System

RTSJ Real

SCJT Safety

SIMA Simulated Integrated

SDD Service Definition Descriptor

SW Software

VM Virtual Machine

; all rights reserved

Integrated Modular Avionics

Integrated Development Environment

Last-In/First-Out

Model-Driven Architecture

Model Based Development

Module Operating System

Multi-Static Reconfiguration

Native POSIX Thread Library

Object Management Group

Operating Systems

Personal Computer

Power-up Built-In Test

Platform Definition Descriptor

Platform Independent Model

Partition Operating System

Performance Optimisation With Enhanced RISC Perfo
Computing
PowerPC

Platform-Specific Model

Portable Operating System Interface

Real Time Operating System

Real-Time Specification for Java

Safety-Critical Java Technology

Simulated Integrated Modular Avionics

Service Definition Descriptor

Software

Virtual Machine

SIMA in DIANA
Draft 0.7

Page 6 of 32

SIMA in DIANA

hanced RISC Performance

© GMV, 2010; all rights reserved

11..33 RREEFFEERREENNCCEE DDOOCC

Ref.

[AD.1] Airlines Electronic Engineering Committee (AEEC). Avionics Applications
Specification 653 Part 1 –

[AD.2] Airlines Electronic Engineering Committee (AEEC). Avionics Applications
Specification 653 Part 2 –

[AD.3] Airlines Electronic Engineering Committee (AEEC). Avionics Applications
Specification 653 Part 3 –

[AD.4] Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho, Tobias Schoofs: Enhanced Dispatchability of Aircrafts
using Multi-Static Configuraltion, ERTS2, 2010.

[AD.5] Tobias Schoofs, Eric Jenn, Stéphan Leriche, Kelvin Nils
the AIDA Avionics Platform, JTRES, September, 2009.

[AD.6] GMV: SIMA Overview, January, 2010.

[AD.7] GMV: SIMA Command Line Tools

[AD.8] GMV: The AIDA System, DIANA White Paper, January 2008.

[AD.9] EuroSim: Pushing Real-time Simulation to the Limit,

11..44 IINNDDEEXX OOFF CCOOTTSS

Name.

APERO Avionics Prototyping Environment for Research and
Operations

AVT ARINC 653 Validation Test Suite; implementation of the
ARINC 653 Part 3 – Conformity Test Specification

EuroSim Real-Time Simulator with person or hardware in the loop

GNU Gnu is Not Unix. Free Operating System Software.

PERC Pico Safety Critical Java Virtual Machine.

PikeOS ARINC 653 compliant RTOS

SIMA ARINC 653 RTOS simulator for Linux

Simulink Environment for multi
design form dynamic and embedded systems

Vincent Prototyping tool for glass cockpit displays

VxWorks 653 ARINC 653 compliant

; all rights reserved

CCUUMMEENNTTSS

Title

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARIN
– Required Services). ARINC Inc., 2006.

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARINC
– Extended Services). ARINC Inc., 2008.

Airlines Electronic Engineering Committee (AEEC). Avionics Applications Software Standard Interface (ARINC
– Conformity Test Specification). ARINC Inc., 2006.

Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho, Tobias Schoofs: Enhanced Dispatchability of Aircrafts
Static Configuraltion, ERTS2, 2010.

Tobias Schoofs, Eric Jenn, Stéphan Leriche, Kelvin Nilson, Ludovic Gauthier, Marc Richard-Foy: Use of PERC Pico in
the AIDA Avionics Platform, JTRES, September, 2009.

GMV: SIMA Overview, January, 2010.

Command Line Tools – Application Development and Configuration Guide, January 2010.

GMV: The AIDA System, DIANA White Paper, January 2008.

time Simulation to the Limit, http://www.nlr.nl/?id=12264&l=en

Description Vendor

Avionics Prototyping Environment for Research and NLR

ARINC 653 Validation Test Suite; implementation of the
Conformity Test Specification

GMV

Time Simulator with person or hardware in the loop NLR, DutchSpace, TASK24

Gnu is Not Unix. Free Operating System Software. Free Software Foundation (FSF)

Virtual Machine. Atego

ARINC 653 compliant RTOS SYSGO

ARINC 653 RTOS simulator for Linux GMV

for multi-domain simulation and model-based
design form dynamic and embedded systems

MathWorks

ass cockpit displays NLR

ARINC 653 compliant and DO-178B-certifiable RTOS Wind River

SIMA in DIANA
Draft 0.7

Page 7 of 32

SIMA in DIANA

Software Standard Interface (ARINC

Software Standard Interface (ARINC

Software Standard Interface (ARINC

Christian Engel, Eric Jenn, Peter H. Schmitt, Rodrigo Coutinho, Tobias Schoofs: Enhanced Dispatchability of Aircrafts

Foy: Use of PERC Pico in

, January 2010.

Vendor

TASK24

Free Software Foundation (FSF)

© GMV, 2010; all rights reserved

22 SSIIMMAA OOVVEERRVVIIEEWW

Simulated Integrated Modular Avionics (
the ARINC 653 Application Programming Interface (
operating systems that do not support
to run on all POSIX-compliant
Thread Library (NPTL), available on
and for RTEMS, version 4.6 or higher

The ARINC 653 standard
Time Operating System (
partitioning resources over time and memory.
as an important foundation for the development of safety
industry.

ARINC 653 defines support for robust partitioning in on
processing unit, usually called a module, is able to host one or more avionics
applications and to execute
underlying system, often called the Module Operating System
separation of the avionics applications

• Each partitioned function has guaranteed access to the processor. The
guarantees shall reflect the frequency as well as the execution time of the
specific application;

• A failure in one p
function.

In consequence, the partitioning approach
the same time, eases verification, validation and certification.

The unit of partitioning is ca
a program in a single application environment: it comprises data, code and its own
context configuration attributes (see

Partitioning separates applications in two dimensions: space and time. Spatial
separation means that the memory of a partition is protected. No application can access
memory out of the scope of its own partition. Temporal s
application at a time has access to system resources, including the processor; therefore
only one application is executing at one point in time
system resources between partitioned applications.

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution

; all rights reserved

WW

Simulated Integrated Modular Avionics (SIMA) is an execution environment,
653 Application Programming Interface (API) and robust partitioning

systems that do not support these features by themselves.
compliant OSes; it is tested and optimised for the Native
), available on OSes like GNU/Linux, kernel version 2.6 or

RTEMS, version 4.6 or higher.

The ARINC 653 standard ([AD.1], [AD.2]) specifies a programming interface for a
Time Operating System (RTOS), and, in addition, establishes a particular
partitioning resources over time and memory. Today, this standard has been established

foundation for the development of safety-critical systems

ARINC 653 defines support for robust partitioning in on-board systems, such that one
processing unit, usually called a module, is able to host one or more avionics
applications and to execute these applications independently. This can be achieved if the
underlying system, often called the Module Operating System
separation of the avionics applications, such that

Each partitioned function has guaranteed access to the processor. The
guarantees shall reflect the frequency as well as the execution time of the
specific application;

failure in one partitioned function cannot cause a failure in another partitioned

the partitioning approach allows reducing on-board hardware and, at
eases verification, validation and certification.

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to
a program in a single application environment: it comprises data, code and its own
context configuration attributes (see Figure 1).

Figure 1: Partitioning

Partitioning separates applications in two dimensions: space and time. Spatial
separation means that the memory of a partition is protected. No application can access
memory out of the scope of its own partition. Temporal separation means that only one
application at a time has access to system resources, including the processor; therefore
only one application is executing at one point in time – there is no competition for
system resources between partitioned applications.

RINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution

SIMA in DIANA
Draft 0.7

Page 8 of 32

SIMA in DIANA

) is an execution environment, providing
and robust partitioning to

by themselves. SIMA is designed
; it is tested and optimised for the Native POSIX

rnel version 2.6 or higher,

interface for a Real-
, and, in addition, establishes a particular method for

this standard has been established
critical systems in the avionics

oard systems, such that one
processing unit, usually called a module, is able to host one or more avionics

independently. This can be achieved if the
 (MOS), provides

Each partitioned function has guaranteed access to the processor. The
guarantees shall reflect the frequency as well as the execution time of the

n another partitioned

board hardware and, at

lled a partition. In a given sense, a partition is equivalent to
a program in a single application environment: it comprises data, code and its own

Partitioning separates applications in two dimensions: space and time. Spatial
separation means that the memory of a partition is protected. No application can access

eparation means that only one
application at a time has access to system resources, including the processor; therefore

there is no competition for

RINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution

© GMV, 2010; all rights reserved

window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues
execution from the point it was previously preempted

Processes within the scope of a partition are scheduled by a priority
scheduler with first-in-first

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
processes within the same partition share the same address space. There is no memory
separation between processes. However, sin
different partitions cannot access each other’s
processes in different partitions is achieved by ports and channels. Ports are
communication end points either for reading or writing th
that is unique in the scope of the partition. Channels connect these ports transparent
to application code.

In SIMA, ARINC 653
processes are mapped
single POSIX program, containing user code and data, the
finally, the platform execution environment, i.e. the

The Module Operating System (MOS), controlling the diff
belonging to the same simulated module,
following picture illustrates this design:

The APEX services are implemented by a static library, cal
the APEX process scheduler on top of the POSIX FIFO scheduler (
features are encapsulated within a core layer; this way main parts of the APEX code do
not rely directly on POSIX, but on scheduling policies impl
The advantage of this approach is enhanced portability
implementation of the SIMA POS, running on bare hardware
scheduler features that introduce subtle differences between different POSIX
implementations are handled in the core layer and hidden from the APEX
implementation.

The MOS implements the APEX partition scheduler. To be able to
partitions, commands are exchanged with the POS layer in the partitions using signals
and shared memory segments. Obviously, this approach does not answer safety and
security threats, caused by random errors in the partitioned code. The POS has to
respond correctly to the given commands which
faulty or malicious application code has corrupted
was designed and developed, following safety critical software guidelines; its purpose is

; all rights reserved

window gains access to the processor. When the execution window terminates, the
is preempted; when the next execution window starts, the program continues

execution from the point it was previously preempted.

Processes within the scope of a partition are scheduled by a priority-based preemptive
first-out (FIFO) order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
in the same partition share the same address space. There is no memory

separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other’s memory. Communication between
processes in different partitions is achieved by ports and channels. Ports are
communication end points either for reading or writing that are identified by
that is unique in the scope of the partition. Channels connect these ports transparent

ARINC 653 partitions are mapped to POSIX processes and
to POSIX threads. Each SIMA application is, hence, linked to

program, containing user code and data, the APEX code and data and,
the platform execution environment, i.e. the NPTL for Linux.

Module Operating System (MOS), controlling the different PO
belonging to the same simulated module, is likewise linked to one POSIX process.
following picture illustrates this design:

Figure 2: SIMA Architecture

The APEX services are implemented by a static library, called POS. The POS implements
the APEX process scheduler on top of the POSIX FIFO scheduler (sched_fifo
features are encapsulated within a core layer; this way main parts of the APEX code do
not rely directly on POSIX, but on scheduling policies implemented by the POS itself.
The advantage of this approach is enhanced portability - there is even an
implementation of the SIMA POS, running on bare hardware - and the fact that
scheduler features that introduce subtle differences between different POSIX
mplementations are handled in the core layer and hidden from the APEX

The MOS implements the APEX partition scheduler. To be able to suspend
partitions, commands are exchanged with the POS layer in the partitions using signals

d shared memory segments. Obviously, this approach does not answer safety and
security threats, caused by random errors in the partitioned code. The POS has to
respond correctly to the given commands which it may fail to do in the case where

cious application code has corrupted the state of the POS. In fact, the POS
was designed and developed, following safety critical software guidelines; its purpose is

SIMA in DIANA
Draft 0.7

Page 9 of 32

SIMA in DIANA

window gains access to the processor. When the execution window terminates, the
is preempted; when the next execution window starts, the program continues

based preemptive
order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653,
in the same partition share the same address space. There is no memory

ce partitions are separated, processes in
Communication between

processes in different partitions is achieved by ports and channels. Ports are
at are identified by a name

that is unique in the scope of the partition. Channels connect these ports transparently

partitions are mapped to POSIX processes and ARINC 653
application is, hence, linked to a

code and data and,

POSIX processes,
is likewise linked to one POSIX process. The

led POS. The POS implements
sched_fifo). POSIX

features are encapsulated within a core layer; this way main parts of the APEX code do
emented by the POS itself.

there is even an
and the fact that

scheduler features that introduce subtle differences between different POSIX
mplementations are handled in the core layer and hidden from the APEX

suspend and resume
partitions, commands are exchanged with the POS layer in the partitions using signals

d shared memory segments. Obviously, this approach does not answer safety and
security threats, caused by random errors in the partitioned code. The POS has to

in the case where
the state of the POS. In fact, the POS

was designed and developed, following safety critical software guidelines; its purpose is

© GMV, 2010; all rights reserved

to support embedded applications. The MOS, however, was not; the MOS does only
simulate the behaviour of an ARINC 653 compliant OS on top of non
systems like standard Linux.

POS and MOS are designed to support real
programming interfaces of the POSIX thread library, like FIFO scheduling and
priorities. Additionally, all memory used during execution is created during initialisation
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages
in and out. However, hard real
preemptive operating system kernel.
by Ingo Mólnar and Thomas Gleixner
deadlines.

ARINC 653 queuing and sampling ports are mapped to UDP ports. This w
be flexibly linked to other ports on the same virtual module or to external resource
represented by a pseudo partition.
devices and protocols, can be defined by means of user callbacks.

For visual control over the execution of ARINC 653 applications on SIMA, the
is provided. The simout
a graphical environment based on the
impression of a module with five partitions running in the

The ARINC 653 services

• All required services defined in Part 1 of the

o Partition Management Services;

o Process Management Services;

o Time Management Services;

; all rights reserved

to support embedded applications. The MOS, however, was not; the MOS does only
e behaviour of an ARINC 653 compliant OS on top of non

systems like standard Linux.

POS and MOS are designed to support real-time applications. They use the real
programming interfaces of the POSIX thread library, like FIFO scheduling and
priorities. Additionally, all memory used during execution is created during initialisation
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages
in and out. However, hard real-time guarantees cannot be met without a
preemptive operating system kernel. If hard real-time is wanted, the PREEMPT

o Mólnar and Thomas Gleixner can be used to achieve guarantees

ARINC 653 queuing and sampling ports are mapped to UDP ports. This w
be flexibly linked to other ports on the same virtual module or to external resource
represented by a pseudo partition. Alternative mappings, e.g. to TCP/IP or even to I/O
devices and protocols, can be defined by means of user callbacks.

visual control over the execution of ARINC 653 applications on SIMA, the
imout program shows the output of the MOS and up to six partitions in

a graphical environment based on the ncurses library. The following figure gives a
impression of a module with five partitions running in the simout environment:

Figure 3: Partition Visualisation

The ARINC 653 services that are currently implemented by SIMA are:

All required services defined in Part 1 of the specification:

Partition Management Services;

Process Management Services;

Time Management Services;

SIMA in DIANA
Draft 0.7

Page 10 of 32

SIMA in DIANA

to support embedded applications. The MOS, however, was not; the MOS does only
e behaviour of an ARINC 653 compliant OS on top of non-safety aware

time applications. They use the real-time
programming interfaces of the POSIX thread library, like FIFO scheduling and thread
priorities. Additionally, all memory used during execution is created during initialisation
and locked in RAM, avoiding paging and the latency penalties caused by swapping pages

time guarantees cannot be met without a fully
PREEMPT-RT patch

used to achieve guarantees for very short

ARINC 653 queuing and sampling ports are mapped to UDP ports. This way, ports can
be flexibly linked to other ports on the same virtual module or to external resources

Alternative mappings, e.g. to TCP/IP or even to I/O

visual control over the execution of ARINC 653 applications on SIMA, the simout tool
program shows the output of the MOS and up to six partitions in

library. The following figure gives an
environment:

© GMV, 2010; all rights reserved

o Health Monitoring Services;

o Intra-Partition Communication Services;

o Inter-Partition Communication Services;

• Some extended services defined in Part 2 of the

o Multiple Module Schedules;

o Logbook System.

More extended services of Part 2 are under development, in particular:

• File System;

• Service Access Points;

• Naming Services;

• Sampling Port Extensions;

• Memory Blocks.

For more information on the SIMA

; all rights reserved

Health Monitoring Services;

Partition Communication Services;

Partition Communication Services;

Some extended services defined in Part 2 of the specification:

Multiple Module Schedules;

Logbook System.

More extended services of Part 2 are under development, in particular:

Service Access Points;

Naming Services;

Sampling Port Extensions;

For more information on the SIMA simulation environment, please refer to [AD.

SIMA in DIANA
Draft 0.7

Page 11 of 32

SIMA in DIANA

[AD.6] and [AD.7]

© GMV, 2010; all rights reserved

33 TTHHEE EECCSS AAPPPPLLIICC

In the scope of the DIANA project, a case study was defined that involves a real
scenario of an environmen
defined that was easy to understand, but sufficiently complex to serve as a
representative use case for
system representative of systems c
transport aircrafts.

Note that an actual environment control system involves more subsystems than
discussed in this document. For simplicity, the description of the system is limited to the
subsystems relevant to the case study.

The ECS involves the following avionics systems, see

• Air conditioning panel

• Zone controller;

• Pack controller;

• System display.

The air conditioning pack is regulated by the pack co
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones.
In order to regulate the temperature of this airflow, the zone controller regulates the
amount of hot air added to the flow of

System display

displays temperature

Flight

Deck

Forw
ard

Zone

Zone controller
feeds the required

aft zone pack outlet

temperature to the

1
 This section is based on contriubutio

2
 © NLR, 2010, all rights reserved

; all rights reserved

CCAATTIIOONN11

In the scope of the DIANA project, a case study was defined that involves a real
scenario of an environmental control – or air conditioning – system.
defined that was easy to understand, but sufficiently complex to serve as a
representative use case for AIDA. The case study focuses on a generic air conditioning
system representative of systems currently in use on regional and long

Note that an actual environment control system involves more subsystems than
discussed in this document. For simplicity, the description of the system is limited to the

ant to the case study.

The ECS involves the following avionics systems, see Figure 4:

ir conditioning panel;

The air conditioning pack is regulated by the pack controller to supply the mixing unit
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones.
In order to regulate the temperature of this airflow, the zone controller regulates the
amount of hot air added to the flow of cool air.

displays temperature

Forw
ard

Zone

Aft Z
one

Zone controller
feeds the required

aft zone pack outlet

temperature to the

pack controller

Air conditioning panel
temperature control

Pack controller
controls air

conditioning pack

Pack

Cooling device

Figure 4: Air conditioning system2

This section is based on contriubutions by NLR.

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 12 of 32

SIMA in DIANA

In the scope of the DIANA project, a case study was defined that involves a real-life
system. A scenario was

defined that was easy to understand, but sufficiently complex to serve as a
. The case study focuses on a generic air conditioning

urrently in use on regional and long-distance air

Note that an actual environment control system involves more subsystems than
discussed in this document. For simplicity, the description of the system is limited to the

ntroller to supply the mixing unit
with a sufficient flow of cool fresh air. This air is supplied to the cockpit and cabin zones.
In order to regulate the temperature of this airflow, the zone controller regulates the

© GMV, 2010; all rights reserved

Air conditioning panel

The desired temperature in the cabin zones and in the cockpit can be manually selected
on the overhead panel by the pilot. The pi
in order to obtain the desired temperature. This is depicted in

Zone controller

The temperature selections on the air conditioning panel of cockpit, forward and aft
cabin are read by the zone controller. The zone controller regulates zone temperatures
to match temperature selections on the air conditioning panel for cockpit, forward and
aft cabin. It is responsible for setting the pack discharge temperatures thereby
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim
air to the zone inlet ducts it keeps the temperature as requested.

Zone control is divided into sepa
control function has the following inputs:

• Temperature selection (from air conditioning panel)

• Zone temperature (measurement in each zone)

• Air duct temperature (measurem

• Aircraft altitude (from ADIRS)

Each function calculates the desired temperature of the mixer unit, the lowest
temperature demand will determine the actual mixer unit temperature. In addition, each
function calculates the desired amount of trim air
obtain the required duct demand temperature. The outputs of each function therefore
are:

• Desired mixer unit temperature

• Trim air demand.

Pack controller

The zone controller feeds the required pack outlet temperature

The pack controller then sets the water extractor outlet temperature in accordance with
demands from the zone controller, by modulating the ram

3
 © NLR, 2010, all rights reserved

; all rights reserved

The desired temperature in the cabin zones and in the cockpit can be manually selected
on the overhead panel by the pilot. The pilot may increase or decrease the temperature
in order to obtain the desired temperature. This is depicted in Figure 5.

Figure 5: Air conditioning panel
3

elections on the air conditioning panel of cockpit, forward and aft
cabin are read by the zone controller. The zone controller regulates zone temperatures
to match temperature selections on the air conditioning panel for cockpit, forward and

is responsible for setting the pack discharge temperatures thereby
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim
air to the zone inlet ducts it keeps the temperature as requested.

Zone control is divided into separate control functions for each zone of the aircraft. Each
control function has the following inputs:

emperature selection (from air conditioning panel);

one temperature (measurement in each zone);

ir duct temperature (measurement in each duct for each zone);

ircraft altitude (from ADIRS).

Each function calculates the desired temperature of the mixer unit, the lowest
temperature demand will determine the actual mixer unit temperature. In addition, each
function calculates the desired amount of trim air to be added to the air duct in order to
obtain the required duct demand temperature. The outputs of each function therefore

esired mixer unit temperature;

rim air demand.

The zone controller feeds the required pack outlet temperature to the pack controllers.

The pack controller then sets the water extractor outlet temperature in accordance with
demands from the zone controller, by modulating the ram-air doors and by

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 13 of 32

SIMA in DIANA

The desired temperature in the cabin zones and in the cockpit can be manually selected
lot may increase or decrease the temperature

.

elections on the air conditioning panel of cockpit, forward and aft
cabin are read by the zone controller. The zone controller regulates zone temperatures
to match temperature selections on the air conditioning panel for cockpit, forward and

is responsible for setting the pack discharge temperatures thereby
maintaining an optimal setting of the cold air mixer unit temperature. By supplying trim

rate control functions for each zone of the aircraft. Each

zone);

Each function calculates the desired temperature of the mixer unit, the lowest
temperature demand will determine the actual mixer unit temperature. In addition, each

to be added to the air duct in order to
obtain the required duct demand temperature. The outputs of each function therefore

to the pack controllers.

The pack controller then sets the water extractor outlet temperature in accordance with
air doors and by-pass valve.

© GMV, 2010; all rights reserved

For safety reasons, the pack controller is redundant. Whe
fails (as detected by the pack controller Build
pack controller takes over (see

Pack control is divided in flow control and temperature control functions. The flow
control function takes the desired pack flow and regulates the pack flow valve. Its input
is:

• Pack flow demand (from air conditioning panel)

Its output is:

• Pack flow valve setting

The pack temperature control function regulates the pack temperature
the by-pass valve and ram air doors. Its inputs are:

• Pack outlet temperature (measurement)

• Pack temperature demand (from mixer control)

Its outputs are:

� Ram air in demand

� Ram air out demand

� By-pass valve setting

4
 © NLR, 2010, all rights reserved

; all rights reserved

For safety reasons, the pack controller is redundant. When the primary pack controller
fails (as detected by the pack controller Build-In Test Equipment (BITE)), the secondary
pack controller takes over (see Figure 6).

Figure 6: Redundant pack controllers
4

Pack control is divided in flow control and temperature control functions. The flow
control function takes the desired pack flow and regulates the pack flow valve. Its input

ack flow demand (from air conditioning panel).

ack flow valve setting.

The pack temperature control function regulates the pack temperature
pass valve and ram air doors. Its inputs are:

ack outlet temperature (measurement);

ack temperature demand (from mixer control).

am air in demand;

am air out demand;

pass valve setting.

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 14 of 32

SIMA in DIANA

n the primary pack controller
In Test Equipment (BITE)), the secondary

Pack control is divided in flow control and temperature control functions. The flow
control function takes the desired pack flow and regulates the pack flow valve. Its input

The pack temperature control function regulates the pack temperature by modulating

© GMV, 2010; all rights reserved

System Display

On the system display, the cruise page
and informs the pilot about the actual temperature in the cockpit and cabins (
The cruise page provides the pilot some basic information from the air conditioning
page.

5
 © NLR, 2010, all rights reserved

; all rights reserved

On the system display, the cruise page monitors the cabin temperature
and informs the pilot about the actual temperature in the cockpit and cabins (
The cruise page provides the pilot some basic information from the air conditioning

Figure 7: AIR section of Cruise page
5

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 15 of 32

SIMA in DIANA

monitors the cabin temperature and pressure
and informs the pilot about the actual temperature in the cockpit and cabins (Figure 7).
The cruise page provides the pilot some basic information from the air conditioning

© GMV, 2010; all rights reserved

44 TTHHEE DDEEMMOONNSSTTRR

44..11 AAIIDDAA CCOOMMPPOONNEENN

AIDA ([AD.8]) is an IMA
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at
highest DO-178B/C DAL level and commercially available today.
of ARINC 653 and the current state
of the IMA execution environment regarding the underlying hardware and operating
system; it enhances the location transparency and it supports a developme
integration process based on model
following figure gives an overview on the AIDA architecture:

The basic building block
651 and 653 standards. Partitions are fault and change containment units and as such
relevant for incremental certification of applications and services as well as for
application deployment and reuse.

Three kinds of partitions, defined by their language binding, are supported: C, Ada and
Java partitions. In general, it is forbidden to mix languages at application level within
one partition. Concerning Java, this requirement is relaxed.
the Java execution environment foresees an automated conversion to C code;
moreover, Java applications interface
components that are directly linked into the partition

; all rights reserved

RRAATTOORR IINNTTEEGGRRAATTIIOONN

NNTTSS

is an IMA-based platform, backward compatible with the ARINC 653
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at

178B/C DAL level and commercially available today. AIDA enh
of ARINC 653 and the current state-of-the-art in IMA, namely it improves the neutrality
of the IMA execution environment regarding the underlying hardware and operating
system; it enhances the location transparency and it supports a developme
integration process based on model-driven engineering and formal methods. The
following figure gives an overview on the AIDA architecture:

Figure 8: AIDA Architecture

The basic building blocks in the AIDA platform are partitions as defined in the ARINC
651 and 653 standards. Partitions are fault and change containment units and as such
relevant for incremental certification of applications and services as well as for
application deployment and reuse.

ions, defined by their language binding, are supported: C, Ada and
Java partitions. In general, it is forbidden to mix languages at application level within
one partition. Concerning Java, this requirement is relaxed. The compilation model of

ution environment foresees an automated conversion to C code;
moreover, Java applications interface directly with the C code of those AIDA middleware
components that are directly linked into the partition.

SIMA in DIANA
Draft 0.7

Page 16 of 32

SIMA in DIANA

based platform, backward compatible with the ARINC 653
standard. This means that AIDA is compatible with ARINC 653 COTS RTOS, certifiable at

enhances aspects
art in IMA, namely it improves the neutrality

of the IMA execution environment regarding the underlying hardware and operating
system; it enhances the location transparency and it supports a development and

driven engineering and formal methods. The

titions as defined in the ARINC
651 and 653 standards. Partitions are fault and change containment units and as such
relevant for incremental certification of applications and services as well as for

ions, defined by their language binding, are supported: C, Ada and
Java partitions. In general, it is forbidden to mix languages at application level within

he compilation model of
ution environment foresees an automated conversion to C code;

of those AIDA middleware

© GMV, 2010; all rights reserved

Applications rely on the ARINC 653 API. Additiona
defined by the AIDA middleware to invoke local or remote services and to exchange
data, based on the publish/subscribe paradigm.

The API level of the middleware is based on ARINC 653 and
in the partitions. Note that RTOS
VxWorks 653, for instance, does not instantiate the partition operating system (POS)
once per partition; instead the POS is linked to the parti
is depicted in Figure 8 by separating A653 services in an own partition.

Other components, namely, the AIDA
for remote invocation and data distribution services, the reconfiguratio
Switcher, System Manager) and the System Health Monitor may be placed in separate
partitions. In Figure 8, this is depicted by placing a layer of partitioned platform
components below the applicati

The elements of the AIDA architecture, such as services, platform and applications, are
controlled by configurations given in descriptors. A
requirements (memory, time resources, services) collected in the Applicat
Requirements Descriptor
captured in the Service Definition
in terms of applications and services on one hand and available hardware resource
the other. This information is collected
made available through dedicated services.

The descriptors are generated from a model
defines a platform independen
communication channels,
This high-level architecture is then mapped onto the platform,
partitions, communication buses
approaches that are based on automatic transformations, this mapping is done
interactively using the PIM
system-wide architecture is broken down to modules and th
output of the process is a
hence, a new model, but also configuration items on module level for different operating
system (currently, VxWorks and SIMA) describin
connection tables and the location of service components. The tool also generates glue
code needed to link the components together.

On porting the ECS application to the AIDA platform, a set of components
integrated into the development tool chain and into the run
gives an overview on the components that were used during demonstrator integration:

; all rights reserved

Applications rely on the ARINC 653 API. Additionally, they can and shall use services
defined by the AIDA middleware to invoke local or remote services and to exchange
data, based on the publish/subscribe paradigm.

The API level of the middleware is based on ARINC 653 and – logically
n the partitions. Note that RTOSes may implement this architecture differently;
VxWorks 653, for instance, does not instantiate the partition operating system (POS)
once per partition; instead the POS is linked to the partition’s virtual address space. Thi

by separating A653 services in an own partition.

Other components, namely, the AIDA platform services, the AIDA broker, responsible
for remote invocation and data distribution services, the reconfiguratio
Switcher, System Manager) and the System Health Monitor may be placed in separate

, this is depicted by placing a layer of partitioned platform
components below the application layer.

The elements of the AIDA architecture, such as services, platform and applications, are
urations given in descriptors. Applications are defined by their

requirements (memory, time resources, services) collected in the Applicat
Descriptor (ARD). Services are defined by the resources they provide,

captured in the Service Definition Descriptor (SDD). The platform as a whole is defined
in terms of applications and services on one hand and available hardware resource
the other. This information is collected in the Platform Definition Descriptor (PDD)
made available through dedicated services.

The descriptors are generated from a model-based tool chain. The model engineer first
defines a platform independent model which describes application components,
communication channels, provided and requested services, message formats

level architecture is then mapped onto the platform, i.e. to hardware nodes,
partitions, communication buses, etc. In contrast to general purpose modelling
approaches that are based on automatic transformations, this mapping is done

ing the PIM-PSM Mapping editor. During the mapping process, the
wide architecture is broken down to modules and their partitioning layout

output of the process is a description of the mapping of the architecture to the platform,
hence, a new model, but also configuration items on module level for different operating
system (currently, VxWorks and SIMA) describing memory layout, partition schedules

the location of service components. The tool also generates glue
code needed to link the components together.

ECS application to the AIDA platform, a set of components
ntegrated into the development tool chain and into the run-time environment.

overview on the components that were used during demonstrator integration:

SIMA in DIANA
Draft 0.7

Page 17 of 32

SIMA in DIANA

lly, they can and shall use services
defined by the AIDA middleware to invoke local or remote services and to exchange

logically - hosted as layer
may implement this architecture differently;

VxWorks 653, for instance, does not instantiate the partition operating system (POS)
s virtual address space. This

by separating A653 services in an own partition.

services, the AIDA broker, responsible
for remote invocation and data distribution services, the reconfiguration services (Boot
Switcher, System Manager) and the System Health Monitor may be placed in separate

, this is depicted by placing a layer of partitioned platform

The elements of the AIDA architecture, such as services, platform and applications, are
are defined by their

requirements (memory, time resources, services) collected in the Application
). Services are defined by the resources they provide,

). The platform as a whole is defined
in terms of applications and services on one hand and available hardware resources on

Descriptor (PDD) that is

based tool chain. The model engineer first
t model which describes application components,

provided and requested services, message formats and so on.
to hardware nodes,

In contrast to general purpose modelling
approaches that are based on automatic transformations, this mapping is done

mapping process, the
eir partitioning layouts. The

description of the mapping of the architecture to the platform,
hence, a new model, but also configuration items on module level for different operating

partition schedules,
the location of service components. The tool also generates glue

ECS application to the AIDA platform, a set of components had to be
time environment. Figure 9

overview on the components that were used during demonstrator integration:

© GMV, 2010; all rights reserved

The components are:

• The ECS application

• The SIMA execut

• The VxWorks execution and development e

• The AIDA Mapping Editor
models to the platform;

• The AIDA Java VM
PERC Pico;

• The AIDA Logbook System; this is a
similar to ARINC 653 Logbooks (described in part 2 of the standard). The
logbooks as well as the client
transparent. Logbook and application instances can be hosted on different nodes
in the system. Schedules, memory resources and communication lines are
configuration controlled and the necessary artefacts l
code are generated by the model

• The AIDA Reconfiguration Engine, based on Multi
platform-wide service that allows the re
hardware failures on

; all rights reserved

Figure 9: AIDA Components

application;

The SIMA execution and development environments;

orks execution and development environment;

The AIDA Mapping Editor that defines a mapping of high-level architecture
models to the platform;

Java VM that was implemented using Atego’s Safety Critical Java VM

The AIDA Logbook System; this is a remote service that provides logbooks
similar to ARINC 653 Logbooks (described in part 2 of the standard). The
logbooks as well as the client applications that use these logbooks are location
transparent. Logbook and application instances can be hosted on different nodes
in the system. Schedules, memory resources and communication lines are
configuration controlled and the necessary artefacts like configurations and glue
code are generated by the model-based tool chain;

The AIDA Reconfiguration Engine, based on Multi-Static Configurations; this is a
wide service that allows the re-hosting of applications in case of

hardware failures on start-up.

SIMA in DIANA
Draft 0.7

Page 18 of 32

SIMA in DIANA

level architecture

that was implemented using Atego’s Safety Critical Java VM

service that provides logbooks
similar to ARINC 653 Logbooks (described in part 2 of the standard). The

applications that use these logbooks are location
transparent. Logbook and application instances can be hosted on different nodes
in the system. Schedules, memory resources and communication lines are

ike configurations and glue

Static Configurations; this is a
hosting of applications in case of

© GMV, 2010; all rights reserved

• The AIDA Broker; this is a set of components, implementing the DDS
communication infrastructure; the component is not further described in this
document.

44..22 DDEEMMOONNSSTTRRAATTOORR

The ECS components were implemented on three computers, two Inte
computers running SIMA on top of Linux, and one PPC on
a Concurrent real-time Linux system was used to host
simulator was connected to the ECS system by means of a standalone SIMA
that uses the ARINC 653 API, without time partitioning
Windows-based desktop computers served as display and control station and
development host, respectively.

Linux

Simulator/Testing PC

EuroSim

ECS Simulation (for ref.)
ECS Plant simulation

(Simulink models

Eurosim&Vincent

Test

Network

Avionics Network

SIMA

ECS plant bridge

Figure

The computers were connected by two networks: an avionics network for application
interoperability and a test network that was used for measu
component deployment.

For the environment simulator the EuroSim
display system is based on the glass cockpit emulator Vincent.

Note that Figure 10 does not show the complete mapping of all components (
logbooks) to modules and partitions. The reason is that the demonstrator uses multi
static configurations, i.e
during start-up. There is, hence, not one mapping of components to hardware nodes
and partitions, but a set of such mappings.
section 4.6.

The following photo gives an i

6
 © NLR, 2010, all rights reserved

; all rights reserved

The AIDA Broker; this is a set of components, implementing the DDS
communication infrastructure; the component is not further described in this

RR AARRCCHHIITTEECCTTUURREE

The ECS components were implemented on three computers, two Inte
computers running SIMA on top of Linux, and one PPC on-board computer

time Linux system was used to host an environment s
simulator was connected to the ECS system by means of a standalone SIMA
that uses the ARINC 653 API, without time partitioning (ECS Plant Bridge)

based desktop computers served as display and control station and
development host, respectively. Figure 10 depicts this architecture:

VxWorks

AIDA run-time

Zone

controller

Target1-PPC

Linux

Target2-PC

Linux

Simulator/Testing PC

ECS Simulation (for ref.)
ECS Plant simulation

(Simulink models)

Eurosim&Vincent intf.

Developmnt PC

AIDA

Development

Environment

Windows XP

Display/Control PC

Cruise page

Vincent

Interface with
ECS plant

bridge

Air panel

Test

Network

Avionics Network

Deployed

Interface with

ECS plant

bridge

Windows XP

NLR

Network

Target3-PC

SIMA

Deployed

Pack

controller

AIDA run-time

SIMA

Deployed

Pack,

zone
in C1, C2

AIDA run-time

Linux

VincentECS plant bridge

Figure 10: Demonstrator Architecture6

The computers were connected by two networks: an avionics network for application
interoperability and a test network that was used for measurements, test exec
component deployment.

For the environment simulator the EuroSim [AD.9] simulation framework was used. The
display system is based on the glass cockpit emulator Vincent.

does not show the complete mapping of all components (
logbooks) to modules and partitions. The reason is that the demonstrator uses multi

i.e. several pre-defined mappings for the case of hardware failures
There is, hence, not one mapping of components to hardware nodes

and partitions, but a set of such mappings. Complete descriptions are given below in

The following photo gives an impression of the ECS test bench:

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 19 of 32

SIMA in DIANA

The AIDA Broker; this is a set of components, implementing the DDS
communication infrastructure; the component is not further described in this

The ECS components were implemented on three computers, two Intel-based desktop
board computer. Additionally,

environment simulator. The
simulator was connected to the ECS system by means of a standalone SIMA application

(ECS Plant Bridge). Two
based desktop computers served as display and control station and

NLR

Network

The computers were connected by two networks: an avionics network for application
rements, test execution and

simulation framework was used. The

does not show the complete mapping of all components (e.g.
logbooks) to modules and partitions. The reason is that the demonstrator uses multi-

defined mappings for the case of hardware failures
There is, hence, not one mapping of components to hardware nodes

Complete descriptions are given below in

© GMV, 2010; all rights reserved

Figure

The computers on this picture are (from left to right):

• Target 2-PC;

• Target 3-PC;

• The PPC development board for the VxWorks system (Target 1

• The display control station, running Vincent;

• The real target computer (used

7
 © NLR, 2010, all rights reserved

; all rights reserved

Figure 11: Demonstrator Test Bench7

The computers on this picture are (from left to right):

The PPC development board for the VxWorks system (Target 1-

ontrol station, running Vincent;

The real target computer (used as Target 1-PPC for demonstration purposes

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 20 of 32

SIMA in DIANA

-PPC);

for demonstration purposes).

© GMV, 2010; all rights reserved

44..33 TTHHEE AAIIDDAA DDEEVVEELL

The AIDA tool chain is quite complex. It comprises artefacts on the system
platform level, the module level
from different vendors such that output from one set of tools has to match the expected
input of another set of tools
chain:

; all rights reserved

LLOOPPMMEENNTT EENNVVIIRROONNMMEENNTT

The AIDA tool chain is quite complex. It comprises artefacts on the system
platform level, the module level and the partition level. Moreover, it integrates tools
from different vendors such that output from one set of tools has to match the expected
input of another set of tools. See Figure 12 as an illustration of the

Figure 12: AIDA Toolchain for SIMA

SIMA in DIANA
Draft 0.7

Page 21 of 32

SIMA in DIANA

The AIDA tool chain is quite complex. It comprises artefacts on the system-wide
Moreover, it integrates tools

from different vendors such that output from one set of tools has to match the expected
 SIMA-based tool

© GMV, 2010; all rights reserved

The top-most input to the tool chain is the
describes the system on architecture level. The PIM is mapped onto the available
hardware and the ARINC 653 platform. This is done by means of the mapping editor, a
tool developed in the scope of the DIANA project. The output of the tool is a set of
configuration and code artefacts that are introduced into
In particular, the mapping tool creates an ARINC 653 standard configuration file and the
SIMA-specific configuration file.
further processing of the configuration in the development tool chain
application (i.e. partition) level.
of the module, but this is of course not visible in this figure.

A set of code artefacts is needed for ports and logbooks; these artefacts are created by
the makebooks and makeports

The application-specific C code may come from different sources. In the case of Java
applications, the C code is

For applications, written directly in C, this
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada
shown in the figure.

When all C artefacts are
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries,
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual
Machine) and AIDA (Java APEX
on).

The lower part of the process, the partition level, is iterated over all partitions in the
system. Note that for multi
iterated, on platform level, over all configurations. This step is not shown in
keep the diagram readable.

44..44 JJAAVVAA OONN AARRIINNCC 66

The porting of PERC Pico
concentrated on very few points, such as threading and priority inheritance, in particular
[AD.5]. PERC Pico relies on a simple memory model, a set of annotations, and a
powerful static verification tool. It compares advantageously to solutions based on
Scoped Memory, a concept proposed by the Real
particular when modularity and runtime safety
— are concerned.

PERC Pico supports the scheduling model proposed by the S
Technology (SCJT), which is fixed priority pre
priority and with the priority ceiling emulation protocol as priority inversion control
mechanism.

The implementation of this scheduling on top of APEX ca
problem with APEX (and with many other operating system), is the absence of the
priority ceiling emulation protocol for locks.

For making up this limitation and implementing correctly the Java scheduling model on
top of operating systems such as APEX, PERC Pico does not use a one
for scheduling and consequently a Java thread is not equivalent to an APEX process.
PERC Pico handles the scheduling of Java threads

; all rights reserved

most input to the tool chain is the Platform Independent Model (PIM)
describes the system on architecture level. The PIM is mapped onto the available

e and the ARINC 653 platform. This is done by means of the mapping editor, a
tool developed in the scope of the DIANA project. The output of the tool is a set of
configuration and code artefacts that are introduced into the target platform tool chains.

particular, the mapping tool creates an ARINC 653 standard configuration file and the
specific configuration file. The configuration files have module scope, but

further processing of the configuration in the development tool chain enters directly
application (i.e. partition) level. Note that the configuration is used also during execution
of the module, but this is of course not visible in this figure.

A set of code artefacts is needed for ports and logbooks; these artefacts are created by
makeports tools from the SIMA tool chain.

specific C code may come from different sources. In the case of Java
applications, the C code is generated by PERC Pico-specific tools.

For applications, written directly in C, this code is generated by human engineers or
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada

When all C artefacts are created the tool chain flows into the standard GNU
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries,
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual
Machine) and AIDA (Java APEX API, Logbooks middleware, Broker middleware and so

The lower part of the process, the partition level, is iterated over all partitions in the
system. Note that for multi-static configurations, the process has to be additionally

evel, over all configurations. This step is not shown in
keep the diagram readable.

665533 AAPPEEXX

PERC Pico to the ARINC 653 APEX interface raises few difficulties
on very few points, such as threading and priority inheritance, in particular

. PERC Pico relies on a simple memory model, a set of annotations, and a
powerful static verification tool. It compares advantageously to solutions based on

, a concept proposed by the Real-Time Specification for Java (
particular when modularity and runtime safety — or, the other way round, testing effort

PERC Pico supports the scheduling model proposed by the Safety
), which is fixed priority pre-emptive scheduling with

with the priority ceiling emulation protocol as priority inversion control

The implementation of this scheduling on top of APEX can be problematic. The main
problem with APEX (and with many other operating system), is the absence of the
priority ceiling emulation protocol for locks.

For making up this limitation and implementing correctly the Java scheduling model on
systems such as APEX, PERC Pico does not use a one

for scheduling and consequently a Java thread is not equivalent to an APEX process.
PERC Pico handles the scheduling of Java threads internally.

SIMA in DIANA
Draft 0.7

Page 22 of 32

SIMA in DIANA

Platform Independent Model (PIM) that
describes the system on architecture level. The PIM is mapped onto the available

e and the ARINC 653 platform. This is done by means of the mapping editor, a
tool developed in the scope of the DIANA project. The output of the tool is a set of

the target platform tool chains.
particular, the mapping tool creates an ARINC 653 standard configuration file and the

The configuration files have module scope, but the
enters directly the

Note that the configuration is used also during execution

A set of code artefacts is needed for ports and logbooks; these artefacts are created by

specific C code may come from different sources. In the case of Java

code is generated by human engineers or
code generators outside the AIDA tool chain in the strict sense, such as SIMULINK.

Note that Ada was not used for the ECS demonstrator and, hence, no Ada-specific tool is

chain flows into the standard GNU compile
chain: The C files are compiled with GCC and linked with LD, adding a set of libraries,
coming from SIMA (the partition operating system), PERC Pico (the Java Virtual

API, Logbooks middleware, Broker middleware and so

The lower part of the process, the partition level, is iterated over all partitions in the
static configurations, the process has to be additionally

evel, over all configurations. This step is not shown in Figure 12 to

APEX interface raises few difficulties
on very few points, such as threading and priority inheritance, in particular

. PERC Pico relies on a simple memory model, a set of annotations, and a
powerful static verification tool. It compares advantageously to solutions based on

Time Specification for Java (RTSJ), in
or, the other way round, testing effort

afety-Critical Java
 FIFO order within

with the priority ceiling emulation protocol as priority inversion control

n be problematic. The main
problem with APEX (and with many other operating system), is the absence of the

For making up this limitation and implementing correctly the Java scheduling model on
systems such as APEX, PERC Pico does not use a one-to-one mapping

for scheduling and consequently a Java thread is not equivalent to an APEX process.

© GMV, 2010; all rights reserved

Fully controlling the scheduling of Java th
a bounded execution time for every Java synchronis
methods and wait/notify/notifyAll operations).

Automatic Garbage collection technologies are not considered certifiable for the m
since the memory heap, which is modified concurrently by multiple threads and the
garbage collector itself, is too complex for static analysis.

The RTSJ specification has defined another allocation mechanism for Java program
based on scoped memory a
RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to
prove that the usage of scopes and the reference assignment to a given scoped object
will not raise any runtime exception can be very difficult.

Concerning the allocation of scoped
the area will not be allocated from the current memory area, leaving the programmer in
doubt about the success of this operation,

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided,
and the maximum memory usage computatio
computation of the maximum stack usage which is a tractable problem.

PERC Pico introduces a series of annotations that allow the program
which context an object will be used.
every scope and to handle the scope change using the RTSJ API, PERC Pico
automatically creates a local scope for every method and uses the programmer's
annotations to determine where to safely allocate objects when a “new” operation is
performed. The annotations do not prevent the code to run with any other Java VM.

During the DIANA project, PERC Pico was ported to
porting activity revealed that the behavio
thanks to the compliance to the ARINC 653 standard
significant differences. Indeed, every standard leaves decisions to the implementation;
this guarantees that (existing) systems with different design approaches may fr
compete implementing the standard
differences in initialisation, configuration and the application of error recovery
mechanisms. For the applications running on top of
visible difference in the behavio
those differences.

The ECS application, namely the Zone Controller and the Pack Controller, was ported to
Java, using the PERC Pico memory annotations. The resulting code was compiled wi
the tool chains for SIMA and VxWorks and run on both systems without any code
changes on application level. The behavior produced by the components on different
platforms was the same and components hosted on different modules in
without any problem.

Since SIMA had already been tes
ARINC 653 GMV and the
simulator would be very close to the behavio
However, the porting of a Safety Critical Java
strict compliance of SIMA to the ARINC 653
that the compliance was not paid
simulator did not form any obstacles to the porting of the VM and its integration with the
demonstrator applications.

; all rights reserved

Fully controlling the scheduling of Java threads allows PERC Pico scheduler to guarantee
n time for every Java synchronisation mechanism (synchronized

methods and wait/notify/notifyAll operations).

Automatic Garbage collection technologies are not considered certifiable for the m
since the memory heap, which is modified concurrently by multiple threads and the
garbage collector itself, is too complex for static analysis.

The RTSJ specification has defined another allocation mechanism for Java program
based on scoped memory areas. The allocation and de-allocation time of objects inside
RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to
prove that the usage of scopes and the reference assignment to a given scoped object

time exception can be very difficult.

erning the allocation of scoped memory areas, the RTSJ specification just says that
the area will not be allocated from the current memory area, leaving the programmer in
doubt about the success of this operation, especially in case of memory fragmentation.

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided,
and the maximum memory usage computation of a program is reduced to the
computation of the maximum stack usage which is a tractable problem.

PERC Pico introduces a series of annotations that allow the programmer to specify in
object will be used. Instead of requiring the progra

every scope and to handle the scope change using the RTSJ API, PERC Pico
automatically creates a local scope for every method and uses the programmer's
annotations to determine where to safely allocate objects when a “new” operation is

The annotations do not prevent the code to run with any other Java VM.

During the DIANA project, PERC Pico was ported to VxWorks 653, PikeOS
porting activity revealed that the behaviour of the implementations are very similar

to the compliance to the ARINC 653 standard — but nevertheless show some
significant differences. Indeed, every standard leaves decisions to the implementation;
this guarantees that (existing) systems with different design approaches may fr

e implementing the standard. Concerning the selected platforms, th
ation, configuration and the application of error recovery

mechanisms. For the applications running on top of PERC Pico, there should be no
in the behaviour – it is the main objective of Java in AIDA

The ECS application, namely the Zone Controller and the Pack Controller, was ported to
sing the PERC Pico memory annotations. The resulting code was compiled wi

the tool chains for SIMA and VxWorks and run on both systems without any code
changes on application level. The behavior produced by the components on different
platforms was the same and components hosted on different modules in

Since SIMA had already been tested against the Conformity Test specified in part 3 of
ARINC 653 GMV and the DIANA project team were confident that the behaviour of the
simulator would be very close to the behaviour of any ARINC 653 compliant RTOS.
However, the porting of a Safety Critical Java VM was an excellent demonstration of the
strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same time
that the compliance was not paid with decreased flexibility. In the contrary, the
simulator did not form any obstacles to the porting of the VM and its integration with the
demonstrator applications.

SIMA in DIANA
Draft 0.7

Page 23 of 32

SIMA in DIANA

reads allows PERC Pico scheduler to guarantee
ation mechanism (synchronized

Automatic Garbage collection technologies are not considered certifiable for the moment
since the memory heap, which is modified concurrently by multiple threads and the

The RTSJ specification has defined another allocation mechanism for Java programs
allocation time of objects inside

RTSJ Scoped Memory areas can be deterministic. In spite of this the analysis needed to
prove that the usage of scopes and the reference assignment to a given scoped object

memory areas, the RTSJ specification just says that
the area will not be allocated from the current memory area, leaving the programmer in

especially in case of memory fragmentation.

PERC Pico has adopted a more restrictive approach, in which every scope is allocated on
the Java stack in a strict LIFO order. This way the memory fragmentation is avoided,

n of a program is reduced to the
computation of the maximum stack usage which is a tractable problem.

mer to specify in
Instead of requiring the programmer to allocate

every scope and to handle the scope change using the RTSJ API, PERC Pico
automatically creates a local scope for every method and uses the programmer's
annotations to determine where to safely allocate objects when a “new” operation is

The annotations do not prevent the code to run with any other Java VM.

PikeOS and SIMA. The
implementations are very similar —

but nevertheless show some
significant differences. Indeed, every standard leaves decisions to the implementation;
this guarantees that (existing) systems with different design approaches may fruitfully

. Concerning the selected platforms, there are
ation, configuration and the application of error recovery

, there should be no
it is the main objective of Java in AIDA to hide

The ECS application, namely the Zone Controller and the Pack Controller, was ported to
sing the PERC Pico memory annotations. The resulting code was compiled with

the tool chains for SIMA and VxWorks and run on both systems without any code
changes on application level. The behavior produced by the components on different
platforms was the same and components hosted on different modules interoperated

specified in part 3 of
project team were confident that the behaviour of the

r of any ARINC 653 compliant RTOS.
demonstration of the

standard. It demonstrated at the same time
flexibility. In the contrary, the

simulator did not form any obstacles to the porting of the VM and its integration with the

© GMV, 2010; all rights reserved

44..55 AAIIDDAA LLOOGGBBOOOOKKSS

AIDA Logbooks are platform
by means of configuration files (Ser
OS specific configuration files and glue code is generated and introduced into the
tool chain.

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

• CREATE_LOGBOOK

• WRITE_LOGBOOK

• READ_LOGBOOK

• GET_LOGBOOK_STATUS

The difference between AIDA Logbooks and ARINC 653 Logbooks is location
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on
which this partition is hosted will also result in
instance of the application needs to continue to write the logbook, it must be ensured by
the function developer that the logbook instances of the two application instances are
written in parallel.

AIDA Logbooks are location transparent and may contain one or more instances. A
service like WRITE_LOGBOOK

time without the necessity for any further application activity.

The DIANA implementation of AIDA Logbooks
communication via ARINC 653 queuing ports to request write and read access to AIDA
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When
a user application invokes a

instances requesting to engrave the logbook entry folded into the message into the non
volatile memory. The logbook instances then perform a write operation on their ARINC
653 Logbook.

The client side communication is implemented in a mid
logbook services to the application in the same partition. Internally, these services
mere communication stubs that exchange messages with the logbook instances.
applications may be coded in Java; AIDA Logbooks prov
binding for this communication stubs.

Figure 13 shows an AIDA logbook system with three redundant instances and one user
application using this logbook. The red lines around the components show partiti
for redundancy reasons, hardware boundaries. It is technically possible, of course, to
host more than one replica of a logbook or one of the replicas and the user application
together on the same computer; for redundancy reasons, this is not useful

; all rights reserved

SS

AIDA Logbooks are platform-wide service components that can be plugged
by means of configuration files (Service Definition Descriptors). From these descriptors,
OS specific configuration files and glue code is generated and introduced into the

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

CREATE_LOGBOOK

WRITE_LOGBOOK

GET_LOGBOOK_STATUS

The difference between AIDA Logbooks and ARINC 653 Logbooks is location
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on
which this partition is hosted will also result in a failure of the logbook. If a backup
instance of the application needs to continue to write the logbook, it must be ensured by
the function developer that the logbook instances of the two application instances are

cation transparent and may contain one or more instances. A
WRITE_LOGBOOK will result in writing a message in all instances at the same

time without the necessity for any further application activity.

The DIANA implementation of AIDA Logbooks uses ARINC 653 Logbooks
communication via ARINC 653 queuing ports to request write and read access to AIDA
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When
a user application invokes a service like WRITE_LOGBOOK a message is sent to all

instances requesting to engrave the logbook entry folded into the message into the non
. The logbook instances then perform a write operation on their ARINC

The client side communication is implemented in a middleware layer that provides the
logbook services to the application in the same partition. Internally, these services
mere communication stubs that exchange messages with the logbook instances.
applications may be coded in Java; AIDA Logbooks provide, hence, a Java language
binding for this communication stubs.

shows an AIDA logbook system with three redundant instances and one user
application using this logbook. The red lines around the components show partiti
for redundancy reasons, hardware boundaries. It is technically possible, of course, to
host more than one replica of a logbook or one of the replicas and the user application
together on the same computer; for redundancy reasons, this is not useful

SIMA in DIANA
Draft 0.7

Page 24 of 32

SIMA in DIANA

wide service components that can be plugged into a system
vice Definition Descriptors). From these descriptors,

OS specific configuration files and glue code is generated and introduced into the target

AIDA Logbooks provide services similar to the ARINC 653 Logbooks, e.g.:

The difference between AIDA Logbooks and ARINC 653 Logbooks is location and scope:
ARINC 653 Logbooks exist only in the context of a partition; a failure of the module on

a failure of the logbook. If a backup
instance of the application needs to continue to write the logbook, it must be ensured by
the function developer that the logbook instances of the two application instances are

cation transparent and may contain one or more instances. A
will result in writing a message in all instances at the same

uses ARINC 653 Logbooks and
communication via ARINC 653 queuing ports to request write and read access to AIDA
Logbooks. Each instance of an AIDA Logbook implements an ARINC 653 Logbook. When

ge is sent to all

instances requesting to engrave the logbook entry folded into the message into the non-
. The logbook instances then perform a write operation on their ARINC

dleware layer that provides the
logbook services to the application in the same partition. Internally, these services are
mere communication stubs that exchange messages with the logbook instances. AIDA

ide, hence, a Java language

shows an AIDA logbook system with three redundant instances and one user
application using this logbook. The red lines around the components show partition and,
for redundancy reasons, hardware boundaries. It is technically possible, of course, to
host more than one replica of a logbook or one of the replicas and the user application
together on the same computer; for redundancy reasons, this is not useful.

© GMV, 2010; all rights reserved

Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore
implemented directly on top of SIMA
host logbook servers to
ARINC 653 compliant system.

ARINC 653 defines logbooks with a two
requests writing a message this message is first stored in a buffer in volatile memory. It
is later written to the non
engraving the message is not directly imposed on the calling process; instead, the
implementation has to define a policy for the scheduling of writing messages.

SIMA uses a system partition to implement such a policy.
engraving the message to non
partition. Moreover, the f
encapsulation of system

The message buffer that temporarily holds the messages before they are engraved
implemented by a shared memory segment between the system partition a
application partition. The following figure illustrates the design:

; all rights reserved

Figure 13: AIDA Logbooks

Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore
implemented directly on top of SIMA. This limited the available modules
host logbook servers to Linux/SIMA nodes. However, clients could still be hosted on any
ARINC 653 compliant system.

ARINC 653 defines logbooks with a two-phase writing algorithm. When an application
message this message is first stored in a buffer in volatile memory. It

is later written to the non-volatile storage medium. This way, the time necessary for
engraving the message is not directly imposed on the calling process; instead, the

has to define a policy for the scheduling of writing messages.

ystem partition to implement such a policy. The time, necessary for
engraving the message to non-volatile memory is taken from scheduling windows of this

he fact that the engraver is part of a separated partition eases the
encapsulation of system-specific code.

that temporarily holds the messages before they are engraved
implemented by a shared memory segment between the system partition a
application partition. The following figure illustrates the design:

Figure 14: SIMA Logbook

SIMA in DIANA
Draft 0.7

Page 25 of 32

SIMA in DIANA

Most ARINC 653 compliant RTOS, including VxWorks 653, do not yet implement ARINC
653 logbooks. SIMA, however, does. The AIDA logbooks system was therefore

ed the available modules available to
nodes. However, clients could still be hosted on any

phase writing algorithm. When an application
message this message is first stored in a buffer in volatile memory. It

volatile storage medium. This way, the time necessary for
engraving the message is not directly imposed on the calling process; instead, the

has to define a policy for the scheduling of writing messages.

The time, necessary for
volatile memory is taken from scheduling windows of this

act that the engraver is part of a separated partition eases the

that temporarily holds the messages before they are engraved is
implemented by a shared memory segment between the system partition and the

© GMV, 2010; all rights reserved

In the ECS demonstrator a logbook for the pack controller,

implemented. The instances of the logbook were distri
the system. Note that the logbook instances can only run on SIMA, since VxWorks does
not provide ARINC 653 Logbooks. However
systems; it is, hence,
achieve this, it was not necessary to change any code between VxWorks and SIMA to
provide the functionality to both systems.

The use of a simulator turned out to be extremely useful. As a research project, DIANA
aimed at implementing new and experimental features that are, partly by nature, not
available in COTS that respond to strict safety demands. As a simulator, SIMA is not
expected to fulfil real on
expensive to implement advanced features like the ARINC 653 extended services or
entirely new services proposed by research activities.

44..66 MMUULLTTII--SSTTAATTIICC RREE

AIDA extends IMA by supporting a first and limited, yet extensible, level of
reconfiguration. To avoid a grow
particular, in terms of certification effort), reconfiguration capabilities are actually
restricted: At start-up, an AIDA compliant system selects autonomously the
configuration that matches the system
qualified set of configurations. This approach is called multi

The first step of the algorithm
the current health state of the sy
reconfiguration domain exchange their private health state, represented by the result of
the power-up built-in test (PBIT). To ensure, all modules will finally agree on the same
system health state, a Byzant

The second step of the algorithm is to apply a configuration that corresponds to the
system health state. This is achieved by a predefined mapping of health states to
possible configuration. If there i
this configuration is not the currently selected one, the system
configuration. Setting a configuration is basically done, by changing the entry point to
the configuration. The entry poi
data should be loaded at boot time. When the configuration
rebooted and the two steps of the algorithms are repeated. If there was no new failure
in the system, the algor
hence, the current configuration.

If the configuration that results from the algorithm is identical to the current
configuration the system
phase. If there is no configuration that maps the current system health state the module
is passivated.

The heterogeneity of the systems had
parameterisation of the multi
found for all modules. To achieve this, the algorithm
target systems. One of the problems
up had been defined for the demonstrators and, even
– for demonstration to an audience and for benchmarking in the lab
identified. Therefore, different tolerance delays, between two seconds and two minutes,
and overall timeouts, between twenty seconds and thre
different demonstration purposes.

; all rights reserved

In the ECS demonstrator a logbook for the pack controller, PACK_LOGBOOK

The instances of the logbook were distributed on the two
the system. Note that the logbook instances can only run on SIMA, since VxWorks does
not provide ARINC 653 Logbooks. However the logbook client can be used in both

is, hence, possible to use the service even from a VxWorks system. To
t was not necessary to change any code between VxWorks and SIMA to

provide the functionality to both systems.

The use of a simulator turned out to be extremely useful. As a research project, DIANA
g new and experimental features that are, partly by nature, not

available in COTS that respond to strict safety demands. As a simulator, SIMA is not
expected to fulfil real on-board safety requirements. It is, hence, much easier and less

ment advanced features like the ARINC 653 extended services or
entirely new services proposed by research activities.

EECCOONNFFIIGGUURRAATTIIOONN

AIDA extends IMA by supporting a first and limited, yet extensible, level of
reconfiguration. To avoid a growth of software complexity beyond acceptable limits (in
particular, in terms of certification effort), reconfiguration capabilities are actually

up, an AIDA compliant system selects autonomously the
configuration that matches the system’s health state among a pre-
qualified set of configurations. This approach is called multi-static reconfiguration.

The first step of the algorithm, that takes place during the definition phase
the current health state of the system. In order to do so, all modules in the same
reconfiguration domain exchange their private health state, represented by the result of

in test (PBIT). To ensure, all modules will finally agree on the same
system health state, a Byzantine Agreement Protocol is used [AD.4].

The second step of the algorithm is to apply a configuration that corresponds to the
. This is achieved by a predefined mapping of health states to

possible configuration. If there is a configuration that maps the system health state and
this configuration is not the currently selected one, the system
configuration. Setting a configuration is basically done, by changing the entry point to
the configuration. The entry point is a file that defines which binaries and configuration

at boot time. When the configuration has been
rebooted and the two steps of the algorithms are repeated. If there was no new failure
in the system, the algorithm shall deduct the same configuration as in the first run and,
hence, the current configuration.

If the configuration that results from the algorithm is identical to the current
configuration the system leaves the definition phase and proceeds

. If there is no configuration that maps the current system health state the module

heterogeneity of the systems had to be taken into account in the design, coding and
parameterisation of the multi-static reconfiguration. First, an overall timeout must be
found for all modules. To achieve this, the algorithm was benchmarked on the different
target systems. One of the problems was the start-up procedure. No synchronised start
up had been defined for the demonstrators and, even worse, different start

for demonstration to an audience and for benchmarking in the lab
identified. Therefore, different tolerance delays, between two seconds and two minutes,
and overall timeouts, between twenty seconds and three minutes,
different demonstration purposes.

SIMA in DIANA
Draft 0.7

Page 26 of 32

SIMA in DIANA

PACK_LOGBOOK, was

two SIMA targets in
the system. Note that the logbook instances can only run on SIMA, since VxWorks does

can be used in both
m a VxWorks system. To

t was not necessary to change any code between VxWorks and SIMA to

The use of a simulator turned out to be extremely useful. As a research project, DIANA
g new and experimental features that are, partly by nature, not

available in COTS that respond to strict safety demands. As a simulator, SIMA is not
board safety requirements. It is, hence, much easier and less

ment advanced features like the ARINC 653 extended services or

AIDA extends IMA by supporting a first and limited, yet extensible, level of
th of software complexity beyond acceptable limits (in

particular, in terms of certification effort), reconfiguration capabilities are actually
up, an AIDA compliant system selects autonomously the

-defined and pre-
static reconfiguration.

definition phase, determines
stem. In order to do so, all modules in the same

reconfiguration domain exchange their private health state, represented by the result of
in test (PBIT). To ensure, all modules will finally agree on the same

The second step of the algorithm is to apply a configuration that corresponds to the
. This is achieved by a predefined mapping of health states to

maps the system health state and
this configuration is not the currently selected one, the system sets this new
configuration. Setting a configuration is basically done, by changing the entry point to

nt is a file that defines which binaries and configuration
 set the system is

rebooted and the two steps of the algorithms are repeated. If there was no new failure
nfiguration as in the first run and,

If the configuration that results from the algorithm is identical to the current
leaves the definition phase and proceeds to the operation

. If there is no configuration that maps the current system health state the module

to be taken into account in the design, coding and
rst, an overall timeout must be

benchmarked on the different
up procedure. No synchronised start-

worse, different start-up scenarios
for demonstration to an audience and for benchmarking in the lab – had been

identified. Therefore, different tolerance delays, between two seconds and two minutes,
e minutes, were chosen for

© GMV, 2010; all rights reserved

Another issue that must be solved is the module reset and passivation mechanism. For
RESET, the ARINC 653 health monitor
error is raised by the recon
hence, propagated to the partition health monitor where RESET was defined as the
corresponding error response action.

On SIMA, a system-specific

procedure apx_shutdown

(MODE

 RETURN_CODE

error

when (

when (

normal

if (MODE is APX_SHUTDOWN_HALT) then

else if (MODE is APX_SHUTDOWN_RESET) then

end if;

RETURN_CODE := NO_ERROR;

end apx_shutdown

In spite of being a SIMA
653 services. It takes two arguments: the
all ARINC 653 services, the
caller. Possible errors are
MODE parameter determines which of two possible actions shall be applied:
RESET. On SIMA, the apx_shutdown

the reset action.

Concerning passivation, the
On VxWorks 653, however, where no such functionality is available, the Mu
Schedules service was
reconfiguration engine requests to switc
continues to work, but no application is ever scheduled.

The system-specific code
requests by the reconfiguration engine. There is one generic system part
module, implementing also other system
applications, e.g. ARINC 653 logbook
reconfiguration approach,

The reconfiguration engine is host
connected to the reconfiguration engines on other modules by queuing ports that
implement the channels

; all rights reserved

Another issue that must be solved is the module reset and passivation mechanism. For
RESET, the ARINC 653 health monitor was used on VxWorks and VxSim:
error is raised by the reconfiguration engine that is not handled within the partition and,
hence, propagated to the partition health monitor where RESET was defined as the
corresponding error response action.

specific shutdown service is available that is defined

apx_shutdown

MODE : in SHUTDOWN_MODE_TYPE;

RETURN_CODE : out RETURN_CODE_TYPE) is

when (current partition is not allowed to issue this

command) =>

RETURN_CODE := INVALID_CONFIG;

when (MODE does not identify a valid shutdown mode

RETURN_CODE := INVALID_PARAMETER;

if (MODE is APX_SHUTDOWN_HALT) then

stop module;

else if (MODE is APX_SHUTDOWN_RESET) then

reboot module;

end if;

RETURN_CODE := NO_ERROR;

apx_shutdown;

In spite of being a SIMA-specific interface, the service is defined in the style of ARINC
653 services. It takes two arguments: the MODE and the RETURN_CODE
all ARINC 653 services, the RETURN_CODE is used to pass error information back to the
caller. Possible errors are INVALID_CONFIG, INVALID_PARAMETER and
MODE parameter determines which of two possible actions shall be applied:

apx_shutdown service with RESET mode was used to implement

Concerning passivation, the shutdown service was, again, the natural choice
On VxWorks 653, however, where no such functionality is available, the Mu

was exploited instead. Instead of shutting down the system, the
reconfiguration engine requests to switch to an empty module schedule. The module
continues to work, but no application is ever scheduled.

specific code was encapsulated in a system partition that answers service
requests by the reconfiguration engine. There is one generic system part
module, implementing also other system-specific services that may be requested by

ARINC 653 logbooks. This way, the overhead, introduced by the
reconfiguration approach, was kept to a minimum.

The reconfiguration engine is hosted on one partition per module. This partition is
connected to the reconfiguration engines on other modules by queuing ports that
implement the channels of the Byzantine Agreement protocol. This is depicted below:

SIMA in DIANA
Draft 0.7

Page 27 of 32

SIMA in DIANA

Another issue that must be solved is the module reset and passivation mechanism. For
used on VxWorks and VxSim: An application

figuration engine that is not handled within the partition and,
hence, propagated to the partition health monitor where RESET was defined as the

is defined as follows:

current partition is not allowed to issue this

down mode) =>

e, the service is defined in the style of ARINC
RETURN_CODE. As in almost
error information back to the

and NO_ERROR. The
MODE parameter determines which of two possible actions shall be applied: HALT or

mode was used to implement

natural choice on SIMA.
On VxWorks 653, however, where no such functionality is available, the Multiple Module

Instead of shutting down the system, the
h to an empty module schedule. The module

encapsulated in a system partition that answers service
requests by the reconfiguration engine. There is one generic system partition per

specific services that may be requested by
. This way, the overhead, introduced by the

ed on one partition per module. This partition is
connected to the reconfiguration engines on other modules by queuing ports that

the Byzantine Agreement protocol. This is depicted below:

© GMV, 2010; all rights reserved

Again, the Multiple Module Schedules service
possible: After a successful completion of the algorithm, i.e., when at the end of the
algorithm the new configuration is equal to the current c
schedule is requested that does not contain the execution windows for the
reconfiguration engine anymore. In consequence, the reconfiguration engine will not
consume any time resources after the system has entered operational ph

For the ECS demonstrator, three configuration scenarios

• Configuration C0 is the basic configuration with all hardware nodes available;

• Configuration C1 is a degraded configuration with the VxWorks node failing;

• Configuration C2 is the d
failing.

Figure 16 illustrates this

; all rights reserved

Figure 15: IMA Reconfiguration Engine

Again, the Multiple Module Schedules service was used to keep the overhead as small as
possible: After a successful completion of the algorithm, i.e., when at the end of the
algorithm the new configuration is equal to the current configuration, a switch to a
schedule is requested that does not contain the execution windows for the
reconfiguration engine anymore. In consequence, the reconfiguration engine will not
consume any time resources after the system has entered operational ph

For the ECS demonstrator, three configuration scenarios were defined:

Configuration C0 is the basic configuration with all hardware nodes available;

Configuration C1 is a degraded configuration with the VxWorks node failing;

Configuration C2 is the degraded configuration with one of the SIMA nodes

illustrates this approach:

SIMA in DIANA
Draft 0.7

Page 28 of 32

SIMA in DIANA

used to keep the overhead as small as
possible: After a successful completion of the algorithm, i.e., when at the end of the

onfiguration, a switch to a
schedule is requested that does not contain the execution windows for the
reconfiguration engine anymore. In consequence, the reconfiguration engine will not
consume any time resources after the system has entered operational phase.

Configuration C0 is the basic configuration with all hardware nodes available;

Configuration C1 is a degraded configuration with the VxWorks node failing;

egraded configuration with one of the SIMA nodes

© GMV, 2010; all rights reserved

Figure 16: Reconfiguration Scenario for ECS Demonstrator

In Figure 16, modules depicted in blue are Intel desktop PCs running Linux with the
SIMA environment. Modules depicted in red are PPC

In configuration C0, Module0
Additionally, it hosts two logbook instances of the

the logbook is hosted together with the primary pack controller on Module1.
the PPC system, hosts the zone controller.

All modules have a system partitio
(MultiStat). The system partitions
reconfiguration engine. The system partitions o
the logbook instances.

In configuration C1, Module2 has failed. The zone controller is now hosted on Module0.
In configuration C2, Module1 has failed. The plant controller is now running on Module0.

8
 Note that hosting two instances o

of redundancy. This architecture was chosen, because there were only two computers in the demonstrator,
running SIMA.

; all rights reserved

: Reconfiguration Scenario for ECS Demonstrator

, modules depicted in blue are Intel desktop PCs running Linux with the
SIMA environment. Modules depicted in red are PPC-based computers running VxWorks.

Module0 serves as spare for the pack controller hosted on
Additionally, it hosts two logbook instances of the PACK_LOGBOOK.8 A third instance of

the logbook is hosted together with the primary pack controller on Module1.
the PPC system, hosts the zone controller.

All modules have a system partition and a partition for the reconfiguration engine
). The system partitions implement all system specific code, needed for the

reconfiguration engine. The system partitions on Module0 and Module1

uration C1, Module2 has failed. The zone controller is now hosted on Module0.
In configuration C2, Module1 has failed. The plant controller is now running on Module0.

Note that hosting two instances of the same logbook on the same hardware node is of course not useful in terms

of redundancy. This architecture was chosen, because there were only two computers in the demonstrator,

SIMA in DIANA
Draft 0.7

Page 29 of 32

SIMA in DIANA

: Reconfiguration Scenario for ECS Demonstrator

, modules depicted in blue are Intel desktop PCs running Linux with the
based computers running VxWorks.

serves as spare for the pack controller hosted on Module1.
A third instance of

the logbook is hosted together with the primary pack controller on Module1. Module2,

reconfiguration engine
implement all system specific code, needed for the

n Module0 and Module1 additionally drive

uration C1, Module2 has failed. The zone controller is now hosted on Module0.
In configuration C2, Module1 has failed. The plant controller is now running on Module0.

f the same logbook on the same hardware node is of course not useful in terms
of redundancy. This architecture was chosen, because there were only two computers in the demonstrator,

© GMV, 2010; all rights reserved

Note that a possible third c
none of the components on Module0 can be hosted on one of the other modules in a
meaningful way.

The ECS Plant is a single
It acts as a communication bridge between the EuroSim
and the ECS application.
reconfiguration approach. Instead, the communication lines to zone and
were duplicated and the correct
location of these components.

All modules, the PPC module with VxWorks as well as the SIMA system on Linux,
performed the reconfiguration algorithm without any problem. In a homogeneous
environment (i.e. SIMA only), the whole reconfiguration algorithm ran within
two seconds (worst case)
described above had to be
phases, up to a minute for the lab benchmarks.

; all rights reserved

Note that a possible third configuration with Module0 failing is not interesting, since
one of the components on Module0 can be hosted on one of the other modules in a

The ECS Plant is a single-partition SIMA application that runs on the Concurrent system.
It acts as a communication bridge between the EuroSim environment simul
and the ECS application. Since it is not an AIDA component, it was not integrated in the
reconfiguration approach. Instead, the communication lines to zone and

the correct line was selected, depending on the
location of these components.

All modules, the PPC module with VxWorks as well as the SIMA system on Linux,
performed the reconfiguration algorithm without any problem. In a homogeneous

. SIMA only), the whole reconfiguration algorithm ran within
(worst case). In a heterogeneous system, the synchronisation issues

described above had to be taken into account. This resulted in a
for the lab benchmarks.

SIMA in DIANA
Draft 0.7

Page 30 of 32

SIMA in DIANA

is not interesting, since
one of the components on Module0 can be hosted on one of the other modules in a

application that runs on the Concurrent system.
environment simulation [AD.9]

Since it is not an AIDA component, it was not integrated in the
reconfiguration approach. Instead, the communication lines to zone and pack controller

the current physical

All modules, the PPC module with VxWorks as well as the SIMA system on Linux,
performed the reconfiguration algorithm without any problem. In a homogeneous

. SIMA only), the whole reconfiguration algorithm ran within less than
. In a heterogeneous system, the synchronisation issues

a longer definition

© GMV, 2010; all rights reserved

55 TTHHEE DDEEMMOONNSSTTRR

To complete the demonstrator, the displays
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a
fixed base research flight
cockpit simulation system.

This completely integrated demonstrator was presented at the exhibition of the Avionics
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airb
A320 cockpit. The ECS control panels were integrated into the cockpit. People using the
flight simulator could change the cabin temperature and control the effect by means of
the EuroSim [AD.9] output displayed on a s
hand side of Figure 17):

ECS target systems

results displayed by

EuroSim

Figure

On the table on the left
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture.
However, the simout output is
partitioning concept.

The demonstrator ran for several hours per day with this set
the operating systems, simulators or AIDA components occurred. The DIANA project
team had sufficient confidence in the system to demonstrate
environment. This confidence was mainly inspired by the quality of COTS components
that were used to built the demonstrator.

9
 © NLR, 2010, all rights reserved

; all rights reserved

RRAATTOORR AATT AAVVIIOONNIICCSS 22001100

To complete the demonstrator, the displays were integrated into NLR’s APERO flight
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a
fixed base research flight simulator built to provide a flexible avionics prototyping and
cockpit simulation system.

This completely integrated demonstrator was presented at the exhibition of the Avionics
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airb

. The ECS control panels were integrated into the cockpit. People using the
flight simulator could change the cabin temperature and control the effect by means of

output displayed on a screen next to the flight simulator (on the left
):

APERO flight

simulator

Integrated ECS

control panels

Figure 17: ECS Demonstrator at Avionics 20109

On the table on the left hand side of Figure 17, the on-board computer, running
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture.

output is displayed on the screen to give a visual impression of the

The demonstrator ran for several hours per day with this set-up. No failures related to
the operating systems, simulators or AIDA components occurred. The DIANA project
team had sufficient confidence in the system to demonstrate it with this heterogene
environment. This confidence was mainly inspired by the quality of COTS components
that were used to built the demonstrator.

© NLR, 2010, all rights reserved

SIMA in DIANA
Draft 0.7

Page 31 of 32

SIMA in DIANA

integrated into NLR’s APERO flight
simulator. APERO, Avionics Prototyping Environment for Research and Operations, is a

simulator built to provide a flexible avionics prototyping and

This completely integrated demonstrator was presented at the exhibition of the Avionics
Event 2010 in Amsterdam. The APERO flight simulator was configured for an Airbus

. The ECS control panels were integrated into the cockpit. People using the
flight simulator could change the cabin temperature and control the effect by means of

creen next to the flight simulator (on the left

APERO flight

simulator

Integrated ECS

control panels

board computer, running
VxWorks is visible. The PCs running the SIMA systems are not visible in the picture.

displayed on the screen to give a visual impression of the

up. No failures related to
the operating systems, simulators or AIDA components occurred. The DIANA project

with this heterogeneous
environment. This confidence was mainly inspired by the quality of COTS components

© GMV, 2010; all rights reserved

66 CCOONNCCLLUUSSIIOONNSS

In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran
real-world avionics applicati
errors or memory leaks and even without deadline misses. The use in the DIANA project
shows impressively that the tool is stable and robust, both in the functional domain and
in timeliness.

SIMA also turned out to be an excellent tool for prototyping applications.
chain is extremely easy to use compared
developed, integrated and tested
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the
initial C-code of ECS application components.

The low effort and, hence, low cost of the development for the SIMA environment,
enabled the project team to prototype and c
project achieved remarkable high quality of software components, in particular the APEX
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and
of course, the ECS application.

Engineers, not familiar with the ARINC 653 APEX, benefited from SIMA’s easy
yet realistic tool chain. Also, the good quality of documentation and sample code eases
studying the behaviour of the ARINC 653 services in detail.

An important factor in the project
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The
project could, hence, rely on the fact th
SIMA simulator on Linux would produce the same functional behaviour.

The porting of a complex environment
ARINC 653 APEX, using SIMA and real
the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same
time that the compliance was not paid
simulator did not form any obstacles to the porting of t
demonstrator applications.

As a research project, DIANA aimed at implementing new and experimental features
that are not available in
demanding safety require
potentially complex features difficult and costly.
respond to real safety
implement advanced feat
entirely new concepts proposed by research activities.
valuable means in particular for aeronautical research programmes.

; all rights reserved

In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran
world avionics applications for several hours and days without interruption, without

errors or memory leaks and even without deadline misses. The use in the DIANA project
shows impressively that the tool is stable and robust, both in the functional domain and

also turned out to be an excellent tool for prototyping applications.
chain is extremely easy to use compared to real-target systems. Application code was

and tested within hours. This advantage was exploited during the
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the

code of ECS application components.

The low effort and, hence, low cost of the development for the SIMA environment,
enabled the project team to prototype and compare different designs. This way, the
project achieved remarkable high quality of software components, in particular the APEX
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and

the ECS application.

not familiar with the ARINC 653 APEX, benefited from SIMA’s easy
yet realistic tool chain. Also, the good quality of documentation and sample code eases
studying the behaviour of the ARINC 653 services in detail.

An important factor in the project was SIMA’s proven compliance to ARINC 653. Like
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The
project could, hence, rely on the fact that the real-target RTOS, VxWorks 653, and the
SIMA simulator on Linux would produce the same functional behaviour.

The porting of a complex environment such as a complete Safety Critical Java VM to the
ARINC 653 APEX, using SIMA and real-target RTOS, was an excellent demonstration of
the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same
time that the compliance was not paid with lack of flexibility. In the contrary, the
simulator did not form any obstacles to the porting of the VM and its integration with the
demonstrator applications.

As a research project, DIANA aimed at implementing new and experimental features
not available in real-target systems. Certifiable RTOS have to fulfil extremely

requirements. This makes the development of new, experimental and
potentially complex features difficult and costly. As a simulator, SIMA is not expected to

real safety challenges. It is, hence, much easier and less expensive to
implement advanced features like the ARINC 653 extended services or

proposed by research activities. A simulator like SIMA is
valuable means in particular for aeronautical research programmes.

SIMA in DIANA
Draft 0.7

Page 32 of 32

SIMA in DIANA

In the scope of the DIANA project, SIMA turned out to be extremely useful. SIMA ran
ons for several hours and days without interruption, without

errors or memory leaks and even without deadline misses. The use in the DIANA project
shows impressively that the tool is stable and robust, both in the functional domain and

also turned out to be an excellent tool for prototyping applications. The SIMA tool
target systems. Application code was

within hours. This advantage was exploited during the
porting of the Java VM, PERC Pico, to the ARINC 653 APEX and the prototyping of the

The low effort and, hence, low cost of the development for the SIMA environment,
ompare different designs. This way, the

project achieved remarkable high quality of software components, in particular the APEX
version of PERC Pico, the AIDA Logbook system, the AIDA Reconfiguration Engine and,

not familiar with the ARINC 653 APEX, benefited from SIMA’s easy-to-use,
yet realistic tool chain. Also, the good quality of documentation and sample code eases

was SIMA’s proven compliance to ARINC 653. Like
VxWorks 653 and PikeOS, SIMA underwent a conformity test, using GMV’s ARINC 653
Validation Testsuite (AVT), the reference implementation of the ARINC 653 Part 3. The

target RTOS, VxWorks 653, and the
SIMA simulator on Linux would produce the same functional behaviour.

as a complete Safety Critical Java VM to the
an excellent demonstration of

the strict compliance of SIMA to the ARINC 653 standard. It demonstrated at the same
lack of flexibility. In the contrary, the

he VM and its integration with the

As a research project, DIANA aimed at implementing new and experimental features
target systems. Certifiable RTOS have to fulfil extremely

This makes the development of new, experimental and
As a simulator, SIMA is not expected to

. It is, hence, much easier and less expensive to
ures like the ARINC 653 extended services or to integrate

A simulator like SIMA is, hence, a

