SIMA
Overview

1S0 9001 @
BUREAU VERITAS UKAS

QUALITY
MANAGEMENT

Certification

008

GMV-SKYSOFT

Torre Ferndo de Magalhaes

Av. D. Jodo IT Lote 1.17.02, 7° Andar
1998 - 025 Lisboa Portugal

Property of GMV
© GMv, 2010; all rights reserved.

INNOVATING SOLUTIONS

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 2 Of 14

1 PURPOSE

Simulated Integrated Modular Avionics (SIMA) is an execution environment, providing the
ARINC 653 Application Programming Interface (API) and robust partitioning to operating
systems that do not support these features by themselves. SIMA is designed to run on all
POSIX-compliant OSes; it is tested and optimised for the Native POSIX Thread Library
(NPTL), available on OSes like GNU/Linux, kernel version 2.6 or higher, and for RTEMS,
version 4.6 or higher.

This document focuses on SIMA on Linux. Its purpose is to give a brief overview on the
core features of the SIMA tool chain and to describe the command line tools POS, MOS,
makeports and simout and, additionally, the Logbook System.

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 3 Of 14

2 SIMA OVERVIEW

Simulated Integrated Modular Avionics (SIMA) is an execution environment, providing the
ARINC 653 Application Programming Interface (API) and robust partitioning to operating
systems that do not support these features by themselves. SIMA is designed to run on all
POSIX-compliant OSes; it is tested and optimised for the Native POSIX Thread Library
(NPTL), available on OSes like GNU/Linux, kernel version 2.6 or higher, and for RTEMS,
version 4.6 or higher.

The ARINC 653 standard specifies a programming interface for a Real-Time Operating
System (RTOS), and, in addition, establishes a particular method for partitioning resources
over time and memory. Today, this standard has been established as an important
foundation for the development of safety-critical systems in the avionics industry.

ARINC 653 defines support for robust partitioning in on-board systems, such that one
processing unit, usually called a module, is able to host one or more avionics applications
and to execute these applications independently. This can be achieved if the underlying
system, often called the Module Operating System (MOS), provides separation of the
avionics applications, such that

e Each partitioned function has guaranteed access to the processor. The guarantees
shall reflect the frequency as well as the execution time of the specific application;

e A failure in one partitioned function cannot cause a failure in another partitioned
function.

In consequence, the partitioning approach allows reducing on-board hardware and, at the
same time, eases verification, validation and certification.

The unit of partitioning is called a partition. In a given sense, a partition is equivalent to a
program in a single application environment: it comprises data, code and its own context
configuration attributes (see Figure 1).

] Partition

71— Program

\PFOCGSS

Module OS

Figure 1: Partitioning

Partitioning separates applications in two dimensions: space and time. Spatial separation
means that the memory of a partition is protected. No application can access memory out
of the scope of its own partition. Temporal separation means that only one application at a
time has access to system resources, including the processor; therefore only one
application is executing at one point in time — there is no competition for system resources
between partitioned applications.

© GMV, 2010; all rights reserved SIMA Overview

: SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 4 Of 14

ARINC 653 defines a static configuration where each partition is assigned a set of
execution windows. The program in the partition associated with the current execution
window gains access to the processor. When the execution window terminates, the
program is preempted; when the next execution window starts, the program continues
execution from the point it was previously preempted.

Processes within the scope of a partition are scheduled by a priority-based preemptive
scheduler with first-in-first-out (FIFO) order for processes with the same priority.

Processes in ARINC 653 must not be confused with processes in POSIX: In ARINC 653
processes in the same partition share the same address space. There is no memory
separation between processes. However, since partitions are separated, processes in
different partitions cannot access each other's memory. Communication between
processes in different partitions is achieved by ports and channels. Ports are
communication end points either for reading or writing that are identified by a name that is
unique in the scope of the partition. Channels connect these ports transparently to
application code.

In SIMA, ARINC 653 partitions are mapped to POSIX processes and ARINC 653
processes are mapped to POSIX threads. Each SIMA application is, hence, linked to a
single POSIX program, containing user code and data, the APEX code and data and,
finally, the platform execution environment, i.e. the NPTL for Linux.

The Module Operating System (MOS), controlling the different POSIX processes,
belonging to the same simulated module, is likewise linked to one POSIX process. The
following picture illustrates this design:

Application Application Application

Posix (NPTL) Posix (NPTL) Posix (NPTL)

Posix (NPTL)

Figure 2: SIMA Architecture

The APEX services are implemented by a static library, called POS. The POS implements
the APEX process scheduler on top of the POSIX FIFO scheduler (sched._fifo). POSIX
features are encapsulated within a core layer; this way main parts of the APEX code do not
rely directly on POSIX, but on scheduling policies implemented by the POS itself. The
advantage of this approach is enhanced portability - there is even an implementation of the
SIMA POS, running on bare hardware - and the fact that scheduler features that introduce
subtle differences between different POSIX implementations are handled in the core layer
and hidden from the APEX implementation.

The MOS implements the APEX partition scheduler. To be able to suspend and resume
partitions, commands are exchanged with the POS layer in the partitions using signals and

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 5 Of 14

shared memory segments. Obviously, this approach does not answer safety and security
threats, caused by random errors in the partitioned code. The POS has to respond
correctly to the given commands which may not be true in the case where faulty or
malicious application code corrupts the state of the POS. In fact, the POS was designed
and developed, following safety critical software guidelines; its purpose is to support
embedded applications. The MOS, however, was not; the MOS does only simulate the
behaviour of an ARINC 653 compliant OS on top of non-safety aware systems like
standard Linux.

POS and MOS are designed to support real-time applications. They use the real-time
programming interfaces of the POSIX thread library, like FIFO scheduling and thread
priorities. Additionally, all memory used during execution is created during initialisation and
locked in RAM, avoiding paging and the latency penalties caused by swapping pages in
and out. However, hard real-time guarantees cannot be met without a fully preemptive
operating system kernel. Standard Linux is not yet a preemptive kernel. Two alternatives
are possible: Deadlines must be restricted to the guarantees possible to be achieved on
Linux, or, alternatively, a kernel, patched with the PREEMPT-RT patch by Ingo Mélnar and
Thomas Gleixner, can be used to achieve guarantees of much lower granularity.

© GMV, 2010; all rights reserved SIMA Overview

®
5 INNOVATING SOLUTIONS

3 HARD REAL-TIME ON LINUX

The main problem, achieving hard real-time behaviour on Linux, is latency, defined as the time
between the arrival of an event (like an interrupt) and the execution of its response. As a
general purpose OS; Linux is designed to enhance the average response time, whereas real-
time systems aim at enhancing the worst case response time as this is the fundamental factor
of impact on the system predictability.

Linux high latencies are a consequence of a non-preemptive kernel approach; the kernel
contains large protected sections, where the kernel can't be pre-empted by a user task.
However, it is the user tasks, implementing the response to an event.

To overcome this situation, Ingo Mélnar, one of the authors of the NPTL, and Thomas Gleixner
reworked the kernel code to reduce non-preemptible sequences to a minimum. This code is
available as a patch, called PREEMPT-RT patch (see http://rt.wiki.kernel.org).

The latency that can be expected with the PREEMPT-RT patch depends on system
configuration. Main drivers for latency are hardware interrupts, causing the kernel to become
active and to enter the remaining non-preemptible sequences. Sources of interrupts are, for
instance, the network interface, the graphic card, typically when running an X server, and
service interrupts coming from the board. This last kind of interrupts is worse with newer
hardware and, especially, with all kinds of portable computers. There are scripts available to
reduce interrupts on your system, but it is not recommended to apply such scripts if you are not
fully aware of what they do in detail. Disabling service interrupts, for instance, may seriously
harm your hardware.

On systems with different hardware configurations, the following latencies have been measured,
after running benchmarks for 24 - 48 hours. All values in the table are in us; runlevel 5 means a
multi-threaded environment with network enabled and an X server running; runlevel 3 means a
multi-threaded environment with network enabled, but without a running X server.

SIMA Overview

Draft 0.5

Page 6 of 14

Runlevel Best Case Average Worst Case
Desktop g 1 ; ?‘71
5 1 18 62
Laptop 3 1 11 48

Table 1: Latency of preemptible Linux kernel

Industry experience confirms that deadlines down to 100 pus can be guaranteed even on a
system that runs graphical user interfaces (GUI). Without GUIs, even shorter deadlines may be
possible. However, deadlines of 100us are sufficient for typical avionics use cases and even
great for simulated avionics running on a desktop computer.

© GMV, 2010; all rights reserved SIMA

Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 7 Of 14

4 THE POS LIBRARY

The POS library provides the ARINC 653 services to hosted applications. In particular, it
implements the

e ARINC 653 services of ARINC 653 Part 1 “Required Services”: Partition
Management, Process Management, Time Management, Inter-Partition and Intra-
Partition Communications, Health Monitor Services;

e A subset of ARINC 653 Part 2 “Extended Services”: Logbook System.

The POS library is statically linked to the hosted application. It provides the library code
and data, including interfaces to other simulation components.

SIMA can run in two different modes:
e Simulation of a multi-partition system scheduled by the MOS application;

e Or executing a single partition that may or may not be part of a multi-partition
system; this latter mode is called standalone mode.

The simplest way to use the POS library is to build a partition for standalone execution. In
standalone execution, the program runs as an ordinary POSIX process, there is not time
separation from other APEX applications. Running applications in standalone mode is a
good way for verifying the program functional behaviour. It does not require configuration
files and allows application debugging.

The user code is linked against the POS library and a set of default objects:
e The main entry point that may be exchange by user code;
e Stubs for applications that do not use ports or logbooks
The following figure illustrates this tool chain:
1 L7+ B »a2s 1

App AG53 gec ApP
code headers object

2 I+ B+ B+ B+ 3y €y

POs main nobooks noports linker Partition

7
- user-defined provided source D D

code object xml

Figure 3: SIMA Basic Tool Chain

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 8 Of 14

5 MOS SIMULATOR

The purpose of the MOS program is to schedule and to health monitor partitioned
applications. The MOS works in three phases:

1. The configuration files are read and the corresponding entities like partitions and health
monitor tables are created in memory;

The MOS goes into real-time mode and starts the partitioned applications;

The MOS enters the scheduling phase; from now on, the program will suspend and
resume partitions and wait for health monitoring events.

The MOS reads two configuration files: the main SIMA configuration file, containing
simulator-specific information and the ARINC 653 configuration.

The partition scheduling is defined in the ARINC 653 configuration file in three hierarchy
levels: the Module_Schedule contains one Partition Schedule per partition; each
Partition _Schedule contains a set of Window_Schedules.

A Window_Schedule defines the starting point and the duration of one execution window.
This way one partition may have n execution windows assigned to it.

The Window_Schedules together define the Module_Schedule or major execution frame
that is repeated during module run-time. If there is a gap between the end of one execution
window and the beginning of the next, the MOS automatically fills it up with an execution
window without a partition assigned to it.

In the SIMA configuration, Window_Schedules are split into smaller units, called slices.
Each execution window may have up to three slices: the start slice, the main slice and the
end slice.

The main slice is always present; it represents the time guaranteed for execution of the
application code itself. The start slice and the end slice are reserved for message
transportation. Only one process is allowed to execute during start and end slices: the UDP
listener. When the next execution window has a start slice defined, the MOS will explicitly
set this process from the WAITING to the RUNNING state. When the duration of the start
slice expires, the listener is set back to WAITING and the application is resumed. When the
duration of the main slice expires, the application is suspended, and, if the execution
window has an end slice defined, the listener process will be set to RUNNING. When no
slices are defined for a window, the duration of the main slice is equal to the duration of the
Window _Schedule.

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 9 Of 14

6 HEALTH MONITORING

Errors occurring during the execution of partitioned applications are reported to the MOS.
The MOS looks up the error in the configuration and applies the corresponding action.
Errors are handled on one of three possible levels: MODULE, PARTITION or PROCESS.
Actions on PARTITION and MODULE level are directly specified in the configuration.
Errors on PROCESS level are delegated to a user defined error handler process (EH).
When the MOS invokes the EH, the latter is started and the control returned to the POS of
the affected partition. Since the EH runs as the highest priority process within the partition,
it will preempt any other process and run immediately.

There are four sources of errors:

Internal errors of the POS
Deadline misses detected by the POS
RAISE_APPLICTATION_ERROR issued by the application

Signals from the Linux kernel

Most errors, like segmentation faults, numeric errors or stack overflows, cannot be
detected by the POS or MOS. Instead, the Linux kernel sends a signal to the POSIX
process, i.e. the APEX partition or the MOS program; the POS catches those signals and
reports the incident to the MOS, the MOS handles them directly. The next figure illustrates
this general behaviour:

<<component>= @

Config

HM'T’FbIes

<<component>= @ e <<component>x> @
Shm
POS MOS
Signal

<<COomponent=: @
e —

Signal Linux Kernel Signal

Figure 4: SIMA Error Handling

The handling of the RAISE_APPLICATION_ERROR service is an exception to the
common error handling. Unlike other errors, this error is not delegated to the MOS, instead,
the POS immediately invokes the EH. However, only errors, defined by the application
itself, may be raised by this service.

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 10 Of 14

7 PORTS

ARINC 653 applications use ports to communicate with the outside world. Ports are
memory areas within the partition address space where messages are written to or read
from by application code. If ports are connected to a channel, the messages in a source
port are copied to the memory area of the destination port.

This transport mechanism is invisible to the application. It is also transparent to the
application where the other port is located: In a partition on the same module or on another
computer.

Channels are defined in the ARINC 653 configuration as a relation between a source port
and one or more destination ports. The ARINC 653 standard leaves it open whether
messages are sent to one destination or all destinations. SIMA sends a message to all
destination ports that are configured. This way, it is possible to emulate a simple unicast
environment with 1:1 relation between ports and a multicast environment with 1:n relation.

The ARINC 653 configuration defines the logical relation between ports. The mapping to
lower level entities implementing ports is out of the scope of the standard. SIMA maps
ARINC 653 ports to UDP ports on Linux. The additional information needed by this
mapping is given in the SIMA main configuration file.

The configuration is not read directly by the POS. Instead, a C-stub must be generated
from the configuration using the makeports tool. The makeports tool is called as follows:

makeports <sima_config> <partition> > <c-file>
makeports config/sima.xml System > systemports.c
In a makefile the command could be used like this:
systemports.c: config/sima.xml config/a653.xml
makeports config/sima.xml > systemports.c

systemports.o: systemports.c
system: ... systemports.o
The following figure shows the tool chain for the generation of ports:

1 L7+ B »as [-SOurce

App AB53 goc App

code headers object user-defined code
D *» aF » L7 provided oEbject
main Ag53 makeports APP 0
conf ~onf ports stub sl
3 [+ B+ L+ B <
POS main nobooks |inker Partition
ObJECt ports stub object object

Figure 5: Ports Tool Chain

© GMV, 2010; all rights reserved SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 11 Of 14

The channel between ports is implemented by an internal process, -called
_apx_udp_listen. The process is automatically started when the application is
connected to the MOS or with the --connect option given in standalone mode.

In standalone mode, this process runs with a priority lower than user process priorities.
This implies that messages are only sent and received when no user process is ready. It
implies also that the transportation mechanism interferes with the user process activity.
These restrictions are acceptable for debugging, but certainly not for the simulation of a
complete IMA system. For this purpose, time slices are used in the MOS.

© GMV, 2010; all rights reserved SIMA Overview

INNOVATING SOLUTIONS

8 SIMOUT

SIMA Overview
Draft 0.5
Page 12 of 14

The SIMOUT program shows the output of the MOS and up to six partitions in a graphical
environment based on the curses library, available in most Linux distributions. SIMOUT invokes
the MOS automatically, using the value in the Startup attribute of the MOS node in the SIMA
configuration as path to the MOS startup script.

When the MOS and the partitions have been started, an output as the following, showing
SIMOUT with five partitions, is presented:

1 - Comtrol

Z - Dunmy 1

3 - Dunmy 2

Value: 105, state: DEC
Value: 93, state: NORMAL
Value: 83, state: INC
Value: 86, state: INC
Value: 100, state: NORMAL
Value: 110, state: DEC
Value: 107, state: DEC
Value: 93, state: NORMAL
Value: 83, state: INC
Value: 88, state: INC
Value: 100, state: NORMAL
Value: 111, state: DEC
Value: 106, state: DEC
Value: 94, state: NORMAL
Value: 83, state: INC
Value: 86, state: INC
Value: 100, state: NORMAL

0000004 692700000
0000005100000000
0000005500300000
0000005900700000
0000006301000000
0000006701300000
0000007101600000
0000007502000000
0000007902300000
0000008302 600000
0000008703000000
0000005103300000
0000005503 600000
0000005904000000
0000010304300000
0000010704 600000
0000011104500000

0000007932300000
0000006132 500000
0000008332700000
0000006532800000
0000006733000000
0000006933200000
0000009133300000
00000093 33500000
0000009533700000
0000009733800000
000000993 4000000
0000010134200000
00000103 34300000
000001053 4500000
0000010734700000
000001093 4800000
0000011135000000

4 - Dunmy 3

5 - System

0000004498500000 0000004759700000
0000004898800000 00000053 60200000

0000005300200000 00000055 60400000

0000005700500000 00000061 60900000

0000006100800000 00000063 61100000

0000006501200000 00000069 61600000

0000006901500000 0000007161700000

0000007301800000 00000077 62200000

0000007702100000 00000079 62400000

0000008102500000 00000085 62900000

0000008502800000 00000087 63000000

0000008903100000 00000093 63500000

0000008303500000 00000085 63700000

0000009703800000 00000101 64200000

0000010104100000 00000103 64400000

0000010504500000 00000109 64900000

0000010904800000 0000011165000000
0 - Control

[0000010407000000] Switching to 0504 for 0.040000000 seconds; assigned to parcition System in operating mode NORMAL
[0000010447000000] Switching te 0101 for 0.100000000 seconds; assigned to partition Control in operating mode NORMAL
[0000010547000000] Switching te 0201 for 0.030000000 seconds; assigned to partition Duwmey 1 in operating mode NORMAL
[0000010577100000] Switching te 0301 for 0.030000000 seconds; assigned to partition Duwmey 2 in operating mode NORMAL
[0000010607100000] Switching te 0501 for 0.040000000 seconds; assigned to parcition System in operating mode NORMAL
[0000010647200000] Switching to 0102 for 0.100000000 ssconds: assigned to parcicion Control in operating mods NORMAL

The figure shows a terminal where a simulated module is running. There are five

Figure 6: Terminal with SIMOUT

partitions,

called “Control”, “Dummy 1” through “Dummy 3", “System”. Below, the output of the MOS
simulator is shown. Since the system is called like the first partition, “Control” is also the title of

the MOS window.

© GMV, 2010; all rights reserved

SIMA Overview

®
g INNOVATING SOLUTIONS

9 SIMA LOGBOOKS

SIMA Overview
Draft 0.5
Page 13 of 14

ARINC 653 logbooks services are implemented by SIMA through system partition, shared
memory and ordinary files. A system partition is used to engrave messages in the logbook,
it reads from the IN_PROGRESS buffer and engraves in the non-volatile memory (NVM). Its
purpose is to provide the ARINC 653 logbooks two step writing behaviour — the time
demanded for engraving messages belongs to the system partition schedule window and
not to the application partition that owns the logbook.

A shared memory is used to realize the logbook IN_PROGRESS buffer, it is visible to the
partition that owns the logbook and to the system partition that engraves the messages.
The NVM, implemented by a file is also accessed by both partitions. The application
partition writes messages to the shared memory and accesses the NVM for reading
operations. While the system partition reads messages from the IN_PROGRESS shared
memory and writes those messages in the NVM file. Figure 7 illustrates the logbook
elements within SIMA implementation.

application partition

shared

... | memory | |

Figure 7 - SIMA Logbook

Within a partition schedule window, messages can be written to the intermediate buffer
until this buffer is full. In a second step, at the system partition schedule window, the
messages are engraved to the NVM.

The SIMA system integrator must be aware that whenever a logbook is specified within a
module, a system partition must also exist in the module. The time spent for accessing the
NVM for writing operations is taken from the system partition schedule windows. Enough

time should be provided to engrave the messages from the IN_PROGRESS buffer.

The position of the system partition schedule windows in the major time frame and the
amount of time attributed for its execution determines when the messages are actually
engraved; large logbooks (in terms of IN_PROGRESS buffer capacity) require longer
schedule windows for system partitions or more frequent schedule windows within a major
time frame than small logbooks. The messages written to the IN_PROGRESS buffer will
only change status to ENGRAVED after the execution of such system partition. Because
ordinary files are used as NVM, the time required for messages to be engraved depends

on the time required by the underlying platform to access files.

© GMV, 2010; all rights reserved

SIMA Overview

SIMA Overview
Draft 0.5
INNOVATING SOLUTIONS Page 14 Of 14

Notice that one system partition can be used to engrave messages from all the logbooks in
the module (default). The system integrator is responsible for specifying appropriate
schedule windows for this partition as it will impact the application partitions behaviour
(messages state transition).

Like SIMA ports, SIMA logbooks require information that is not specified in the ARINC
configuration. The name for the logbook NVM and a key for the shared memory must be
provided within SIMA configuration file. This information (together with the ARINC
configuration information) is used by the POS to allocate and initialize the resources
(shared memory and files) before the logbook is used.

As illustrated in the listing below, a DeviceType node is also specified in the logbook
description at SIMA configuration. Currently, only one type is defined; “file”. The logbook
name in the LogbookName node must be the same given in the ARINC 653 configuration.
The Logbook xml node is a child node of Partition node within SIMA xml configuration

file.

<Logbook
LogbookName="ManagementData"
NVMName="P2LB1"
DeviceType="file"
LogbookKey="60097"/>

</Logbook>

SIMA provides a tool for creating: (i) stubs that provide the POS with information from the
configuration files (both ARINC 653 and SIMA main configuration), (i) files required for the
logbook NVM and (iii) logbooks system partition. For generating logbook stubs,
makebooks is used as exemplified below:

makebooks <sima_config> <partition> <stub-c-file>
makebooks config/sima.xml "Flight Controls" logbook_stub.c

In this example the input for makebooks is a SIMA configuration file at
(config/sima.xml) and the name of logbook owner partition (“F1ight Controls”). As
output, makebooks generates the stub for the application partition and the files required by
the logbook NVM. The generated stub source code is named according to the third
argument provided in the line invoking makebooks: logbook_stub.c according to the
example.

When used with the parameter --system, the makebooks tool generates the system
partition that engraves the logbook messages:

makebooks —--system <sima_config> <partition>
<system-partition-c-file>
makebooks —-system config/sima.xml "" system_partition.c

Notice in the example that the parameter <partition name> was given as empty;
therefore the generated system partition will engrave messages from all logbooks declared
in SIMA and corresponding ARINC 653 configuration. It is possible to generate system
partitions to engrave messages from one logbook only by giving this logbook owner
partition name as parameter. It can be used for the partition (and the system partition)
execution in standalone mode or for distributing the engrave process through different
system partitions within the module.

© GMV, 2010; all rights reserved SIMA Overview

