OPERATIONAL SBAS TESTBED

NTRIP (RTCM through the internet) RINEX 2.X/3.X EGNOS EDAS Proprietary raw format

GPS, GLONASS, Galileo, BeiDou Supported GNSS core constellations

Single-frequency (L1) augmentation Dual-frequency (L1/L2 or L1/L5) augmentation

MT-27 and MT-28 Dynamic mask in multi-constellation mode

RTCA DO-229D / ICAO SARPs for SBAS L1 DFMIC DCD draft for L1/L5 SBAS RTCM SC-104 v2.3 for virtual DGPS emulation SISNET for message dissemination through the internet

Special messages support

Real time Post-processing

Input formats

Supported GNSS core constellations

Supported frequencies

Operating modes

Output formats

Accuracy

Product demos at:

http://www.gmv.com/en/Products/magicSBAS/Testbeds/

Information website:

http://www.gmv.com/en/Products/magicSBAS

CONTACT

magicsbas@gmv.com

© GMV, 2016
MOTIVATION
The interest in Satellite Based Augmentation Systems (SBAS) is growing worldwide. In addition to the currently existing systems, WAAS in the US, EGNOS in Europe, MSAS in Japan and GAGAN in India, the four already in operational use, other regions are expressing interest in the SBAS technology. In the last few years, countries like Russia (SDCM) and South Korea have launched their own national SBAS Programs, and other regions have initiated preliminary feasibility studies for SBAS implementation in their territories.

magicSBAS can be used both as a powerful engineering environment to support the design and implementation of an SBAS, an also as an operational testbed to provide early services. In testbed mode, magicSBAS can be used to demonstrate the benefits of SBAS technology to the potential user community in a given region. magicSBAS has also been successfully used for training and capacity building in the area of GNSS/SBAS.

MAIN FEATURES
magicSBAS can process observation data from a Real Time Network of Stations to generate wide area SBAS corrections and integrity parameters compliant with RTCA/DO-229D and ICAO SARPs for L1 SBAS and latest DFMC ICD draft for L1/L5 SBAS.

magicSBAS currently supports the processing of multiple GNSS constellations such as GPS, GLONASS, Galileo and BeiDou, optimizing the bandwidth usage by means of an innovative technique for the dynamic management of the satellite mask.

KEY ADVANTAGES
One of the key advantages of magicSBAS is the capability to process raw data in standard formats like NTRIP, RINEX or EGNOS EDAS. The NTRIP protocol in particular is a widely extended, open non-proprietary protocol designed to disseminate GNSS streaming data over the internet and is supported by most of the commercial dual-frequency GNSS streaming receivers. There are currently hundreds of Real Time Reference Stations worldwide providing data in this format that can be used together with magicSBAS to quickly evaluate the feasibility of an SBAS in nearly any region.

magicSBAS can be run both in real-time and post-processing modes. In real-time mode, magicSBAS can be used to provide an early SBAS demonstration service for aviation users and to support non-safety critical applications like survey, mapping, precision agriculture or multi-modal transportation. In post-processing mode, magicSBAS engineering, feasibility studies, integrity analysis and personnel training and capacity building.

PERFORMANCE
The magicSBAS algorithms have been optimized to provide the best performance in the most demanding conditions and have been tested in many regions of the world, including areas over equatorial and polar regions. The figures below show examples of SBAS solutions produced with magicSBAS.

The magicSBAS product suite includes a real-time service monitor and two performance analysis-modules called magicGEMINI and eclayr. Using these modules, the operator can perform a comprehensive set of performance analysis including accuracy, integrity, service continuity and availability.