Skip to main content
Logo GMV

Main navigation

  • Sectors
    • Icono espacio
      Space
    • Icono Aeronáutica
      Aeronautics
    • Icono Defensa y Seguridad
      Defense and Security
    • Icono Sistemas Inteligentes de Transporte
      Intelligent Transportation Systems
    • Icono Automoción
      Automotive
    • Icono Ciberseguridad
      Cybersecurity
    • Icono Servicios públicos Digitales
      Digital Public Services
    • Icono Sanidad
      Healthcare
    • Icono Industria
      Industry
    • Icono Financiero
      Financial
    • Icono Industria
      Services
    • All Sectors

    Highlight

    Astronauta
    For all mankind: fact or fiction?
  • Talent
  • About GMV
    • Get to Know the Company
    • History
    • Management Team
    • Certifications
    • Corporate Social Responsibility
  • Communication
    • News
    • Events
    • Blog
    • Magazine GMV News
    • Press Room
    • Media library
    • Latest from GMV

Secondary navigation

  • Products A-Z
  • GMV Global
    • Global (en)
    • Spain and LATAM (es - ca - en)
    • Germany (de - en)
    • Portugal (pt - en)
    • Poland (pl - en)
    • All branches and all GMV sites
  • Home
  • Communication
  • Press Room
  • Press Releases
Back
New search
Date
  • Automation

The GreenBot autonomous system completes successful field trials for sustainable woody crop protection

09/07/2025
  • Print
Share

GreenBot demonstrates its ability to improve farmer profitability and minimize environmental impact under real-world conditions, thanks to a consortium that brings together technology, research, and the agri-food sector

The robotic vehicle integrates artificial intelligence, autonomous navigation, and machine vision to identify and treat weeds with pinpoint accuracy, reducing the use of herbicides in crops such as olive, citrus, and almond trees

greenbot-junio25.jpg

The GreenBot project has taken a key step towards sustainable agriculture with the field deployment of a high-precision autonomous vehicle designed for the smart and localized control of weeds in woody crops such as almond, citrus, and olive trees. This breakthrough, made possible thanks to a public-private partnership, integrates artificial intelligence (AI), robotics, and machine vision to optimize the use of plant protection products, reduce costs, and mitigate the environmental impact of intensive farming.

A tech response to an agronomic challenge

Weeds pose a constant threat to agricultural production, with estimated crop yield losses of up to 40%. Conventional control methods, based on the widespread application of herbicides, are not only costly (up to 30% of production costs) but also harmful to the environment due to drift or runoff.

GreenBot addresses this problem through a precise and targeted approach, adapted to the complex environment of woody crops, where access under the tree canopy and the presence of irrigation systems make the use of conventional machinery unfeasible without risk of damage.

Preliminary results and field validation

During field tests, the autonomous system proved effective under different light, soil, and plant cover conditions. Areas of improvement have been identified in relation to the detection of small plants in shaded conditions, which has prompted further training of the model with enriched data.

With an inference frequency of 1 second per image, the system is able to operate in real time, without the need for external servers, and has achieved a complete integration between perception, navigation, and localized application, validated by all the technical teams involved.

GreenBot involves a multidisciplinary consortium made up of the University of Seville’s AGR-278 “Smart Biosystems Laboratory” research group, GMV, TEPRO, PIONEER HiBred Spain SL, and Cooperativas Agroalimentarias de Andalucía. The Greenbot Task Force project was scheduled to last 21 months and concluded on 30 June 2025. 

Cutting-edge technology for localized application

As part of this project, GMV has developed an autonomous robotic platform controlled by its uPathWay solution, combining machine vision, smart navigation, and a localized application system for plant protection products. The robot’s features include:

  • Autonomous inter-row navigation based on ROS2, GNSS RTK sensors, IMUs, and, optionally, LiDAR or proximity sensors.
  • A semi-circular robotic arm that encircles the trunks without stopping forward movement, equipped with spray nozzles that are only activated on the specific area where weeds are detected, minimizing the use of chemicals.
  • The system makes it possible to identify the critical area to be treated - between the trunk and the drip line - with great precision, avoiding damage to the crop and ensuring effective intervention on existing weeds.

The weed detection core, developed by the University of Seville, is based on a ZED 2i stereo vision system installed at low height, connected to a 64 GB Jetson AGX Orin processor. An ad hoc trained YOLO-based detection model processes high-resolution images in real time, identifying the species, position, and dimensions of each weed with a spatial accuracy of ±2 cm.

Each detection is converted into a structured dataset (annotated image, class, confidence, 3D coordinates, etc.) that is automatically integrated into the robot’s control and processing system through a REST API implemented with FastAPI.

lohod-greenbot.jpg

This project is funded by the 2022 round of grants for European Innovation Partnership (EIP) Operational Groups, within the framework of Rural Development Program of Andalusia 2014-2022, which in turn is covered by the Spanish Ministry of Agriculture, Livestock, Fisheries, and Sustainable Development’s Order of 7 July 2020 (sub-measure 16.1, operations 16.1.2 and 16.1.3).

Greenbot

More info:

Marketing and Comunicación
GMV Secure e-Solutions
[email protected] 

  • Print
Share

Related

bannerhome_gmv-news_92.jpg
  • Automation
  • Robotic and Scientific Exploration
Article: The new role of robotics in industry. A step toward the future of automation and sustainability
GMV en Smart Energy Congress 2021 hablando de IA y Robótica Móvil
  • Automation
Mobile robotics and AI will radically improve the way the world moves.
GMV en Fruit Attraction 2021
  • Automation
  • Digitization
Technology, Innovation, and Adaptation to Change for the Future of the Agriculture Sector

Contact

Europaplatz 2
64293 Darmstadt | Deutschland
Tel. +49 6151 3972 970
Fax. +49 6151 8609 415

Zeppelinstraße, 16
82205 Gilching | Deutschland
Tel. +49 (0) 8105 77670 150
Fax. +49 (0) 8105 77670 298

Contact menu

  • Contact
  • GMV around the world

Blog

  • Blog

Sectors

Sectors menu

  • Space
  • Aeronautics
  • Defense and Security
  • Intelligent Transportation Systems
  • Automotive
  • Cybersecurity
  • Digital Public Services
  • Healthcare
  • Industry
  • Financial
  • Services
  • Talent
  • About GMV
  • Shortcut to
    • Press Room
    • News
    • Events
    • Blog
    • Products A-Z
© 2025, GMV Innovating Solutions S.L.

Footer menu

  • Contact
  • Legal Notice
  • Privacy Policy
  • Cookie Policy
  • Impressum

Footer Info

  • Commitment to the Environment
  • Financial Information